Участник:Unreal.eugene — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
 
Строка 33: Строка 33:
 
|proof=
 
|proof=
  
Чтобы блуждание закончилось в координает $x$, нужно, чтобы количество движений на +1 было на $x$ больше ($-x$ меньше) количества движений на -1. Ясно, что это невозможно, если координата $x$ имеет не ту же четность, что и $n$, так как в результате любого блуждания из $n$ шагов координата, в которой мы оказываемся в конце, всегда имеет такую же четность, что и $n$. В случае однаковой четности искомое количество равно количеству битовых векторов длины $n$, в которых ровно <tex>\frac{n + x}{2}</tex> единиц. Понятно, что все такие битовые вектора можно получить следующим способом: выберем <tex>\frac{n + x}{2}</tex> позиций в векторе длины $2n$, на этих позициях расположим значение 1, а на остальных {{---}} значение 0. Из построения ясно, что количество таких способов по определению равно числу сочетаний <tex>\binom{n}{\frac{n + x}{2}}</tex>.
+
Чтобы блуждание закончилось в координате $x$, нужно, чтобы количество движений на +1 было на $x$ больше (на $-x$ меньше) количества движений на -1. Ясно, что это невозможно, если координата $x$ имеет не ту же четность, что и $n$, так как в результате любого блуждания из $n$ шагов координата, в которой мы оказываемся в конце, всегда имеет такую же четность, что и $n$. В случае однаковой четности искомое количество равно количеству битовых векторов длины $n$, в которых ровно <tex>\frac{n + x}{2}</tex> единиц. Понятно, что все такие битовые вектора можно получить следующим способом: выберем <tex>\frac{n + x}{2}</tex> позиций в векторе длины $2n$, на этих позициях расположим значение 1, а на остальных {{---}} значение 0. Из построения ясно, что количество таких способов по определению равно числу сочетаний <tex>\binom{n}{\frac{n + x}{2}}</tex>.
 +
}}
 +
 
 +
{{
 +
Теорема | id=3
 +
|statement=
 +
Пусть $w_i$ {{---}} количество блужданий длины $2n$, которые оканчиваются в нуле. Тогда верна следующая рекуррентная формула:
 +
 
 +
<tex>w_n = 2 \sum\limits_{i = 0}^{n - 1}{w_i C_{n-i-1}}</tex>, где $C_i$ {{---}} число Каталана.
 +
 
 +
|proof=
 +
Доказательство очень похоже на вывод количества путей Дика длины $2n$.
 +
 
 +
Рассмотрим позицию последнего пересечения путем блуждания нулевой координаты, не равную $2n$. Пусть эта координата равна $2x$, тогда после этого есть два варианта развития: перемещение либо на +1, либо на -1. В обоих случаях путь в следующий раз пересечёт нулевую координату только на $2n$-ое пермещение, поэтому при перемещении из координаты $2x$ далее лежит путь Дика длины $2n - 2x - 2$, не заходящий либо левее координаты 1 (в случае перемещений +1), либо не заходящий правее кординаты -1 (в случае перемещения -1). Количество путей Дика длины $2n - 2x - 2$ равно $C_{n-x-1}$. Так как в каждом пути существует последняя позиция пересечения нулевой координаты, не равная $2n$, то можно рекурсивно посчитать все блуждания следующим образом:
 +
 
 +
<tex>w_n = \sum\limits_{x = 0}^{n - 1}{w_x \cdot 2 C_{n-x-1}} = 2 \sum\limits_{i = 0}^{n - 1}{w_i C_{n-i-1}}</tex>
 +
}}
 +
 
 +
{{
 +
Теорема | id=4
 +
|statement=
 +
Производящая функция для количества блужданий чётной длины, заканчивающихся в нулевой координате, равна:
 +
 
 +
<tex>W(t) = \dfrac{1}{\sqrt{1 - 4t}}</tex>
 +
 
 +
|proof=
 +
Доказательство через производные можно посмотреть [[Производящая_функция#.D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.80_.D0.B7.D0.B0.D0.B4.D0.B0.D1.87.D0.B8_.D0.BD.D0.B0_.D0.BD.D0.B0.D1.85.D0.BE.D0.B6.D0.B4.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D1.80.D0.BE.D0.B8.D0.B7.D0.B2.D0.BE.D0.B4.D1.8F.D1.89.D0.B5.D0.B9_.D1.84.D1.83.D0.BD.D0.BA.D1.86.D0.B8.D0.B8|здесь]]. Далее будет приведено доказательство, использующее реккурентное соотношение из предыдущей теоремы.
 +
 
 +
Реккурентному соотношению из предыдущей теоремы соответствует равенство соответствующих формальных рядов:
 +
 
 +
$W(t) = 1 + 2 t W(t) C(t)$, где $C(t)$ {{---}} производящая функция для чисел Каталана.
 +
 
 +
Таким образом, можно выразить $W(t)$:
 +
 
 +
<tex>W(t) = \dfrac{1}{1 - 2 t C(t)} = \dfrac{1}{\sqrt{1 - 4 t}}</tex>
 
}}
 
}}

Версия 03:06, 20 мая 2021

Определение:
Случайное блуждание (англ. random walk) — случайный процесс, состоящий из последовательности случайных шагов на каком-нибудь множестве. Обычно рассматриваются случайные блуждания на множестве целых чисел $\mathbb{Z}$ с началом в нуле и с равновероятными шагами либо на +1, либо на -1.


Определение:
Иногда также может рассматриваться просто блуждание — комбинаторный объект, который появляется как результат случайного блуждания над целочисленной прямой. Блуждание из $n$ шагов можно однозначно задать последовательностью длины $n$, на $i$-й позиции которой стоит либо +1, либо -1, то есть битовым вектором.


Примеры

Тут когда-нибудь появятся примеры

Пути Дика

Что-то про пути Дика

Свойства

Свойства блужданий

Теорема:
Число различных блужданий длины $n$ равно $2^n$.
Доказательство:
[math]\triangleright[/math]
Для любого блуждания длины $n$ можно взаимно однозначно сопоставить битовый вектор длины $n$. Таким образом, количество различных блужданий длины $n$ равно количеству битовых векторов, а именно [math]2^n[/math].
[math]\triangleleft[/math]
Теорема:
Число различных блужданий длины $n$, заканчивающихся в целой координате $x$ ([math]|x| \leq \lfloor \frac{n}{2} \rfloor[/math]), равно [math]\binom{n}{\frac{n + x}{2}}[/math], если $n$ и $x$ имеют одинаковую четность, и 0 иначе.
Доказательство:
[math]\triangleright[/math]
Чтобы блуждание закончилось в координате $x$, нужно, чтобы количество движений на +1 было на $x$ больше (на $-x$ меньше) количества движений на -1. Ясно, что это невозможно, если координата $x$ имеет не ту же четность, что и $n$, так как в результате любого блуждания из $n$ шагов координата, в которой мы оказываемся в конце, всегда имеет такую же четность, что и $n$. В случае однаковой четности искомое количество равно количеству битовых векторов длины $n$, в которых ровно [math]\frac{n + x}{2}[/math] единиц. Понятно, что все такие битовые вектора можно получить следующим способом: выберем [math]\frac{n + x}{2}[/math] позиций в векторе длины $2n$, на этих позициях расположим значение 1, а на остальных — значение 0. Из построения ясно, что количество таких способов по определению равно числу сочетаний [math]\binom{n}{\frac{n + x}{2}}[/math].
[math]\triangleleft[/math]
Теорема:
Пусть $w_i$ — количество блужданий длины $2n$, которые оканчиваются в нуле. Тогда верна следующая рекуррентная формула: [math]w_n = 2 \sum\limits_{i = 0}^{n - 1}{w_i C_{n-i-1}}[/math], где $C_i$ — число Каталана.
Доказательство:
[math]\triangleright[/math]

Доказательство очень похоже на вывод количества путей Дика длины $2n$.

Рассмотрим позицию последнего пересечения путем блуждания нулевой координаты, не равную $2n$. Пусть эта координата равна $2x$, тогда после этого есть два варианта развития: перемещение либо на +1, либо на -1. В обоих случаях путь в следующий раз пересечёт нулевую координату только на $2n$-ое пермещение, поэтому при перемещении из координаты $2x$ далее лежит путь Дика длины $2n - 2x - 2$, не заходящий либо левее координаты 1 (в случае перемещений +1), либо не заходящий правее кординаты -1 (в случае перемещения -1). Количество путей Дика длины $2n - 2x - 2$ равно $C_{n-x-1}$. Так как в каждом пути существует последняя позиция пересечения нулевой координаты, не равная $2n$, то можно рекурсивно посчитать все блуждания следующим образом:

[math]w_n = \sum\limits_{x = 0}^{n - 1}{w_x \cdot 2 C_{n-x-1}} = 2 \sum\limits_{i = 0}^{n - 1}{w_i C_{n-i-1}}[/math]
[math]\triangleleft[/math]
Теорема:
Производящая функция для количества блужданий чётной длины, заканчивающихся в нулевой координате, равна: [math]W(t) = \dfrac{1}{\sqrt{1 - 4t}}[/math]
Доказательство:
[math]\triangleright[/math]

Доказательство через производные можно посмотреть здесь. Далее будет приведено доказательство, использующее реккурентное соотношение из предыдущей теоремы.

Реккурентному соотношению из предыдущей теоремы соответствует равенство соответствующих формальных рядов:

$W(t) = 1 + 2 t W(t) C(t)$, где $C(t)$ — производящая функция для чисел Каталана.

Таким образом, можно выразить $W(t)$:

[math]W(t) = \dfrac{1}{1 - 2 t C(t)} = \dfrac{1}{\sqrt{1 - 4 t}}[/math]
[math]\triangleleft[/math]