Участник:Quarter — различия между версиями
Quarter (обсуждение | вклад) |
Quarter (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
== Распределение степеней вершин == | == Распределение степеней вершин == | ||
+ | {{Определение | ||
+ | |id=def_degree_dist | ||
+ | |definition='''Распределение степеней вершин случайного графа''' - это функция <tex>P(x)</tex>, определённая на <tex>\mathbb{R}</tex> как <tex>P(\xi=x)</tex>, то есть выражающая вероятность того, что вершина <tex>\xi</tex> имеет степень <tex>x</tex> | ||
+ | }} | ||
Распределение степеней <tex>P(k)</tex> графа определяется как доля узлов, имеющих степень <tex>k</tex>. Таким образом, если есть в общей сложности <tex>n</tex> узлов в графе и из них <tex>n_k</tex> имеют степень <tex>k</tex>, то <tex>P(k) = \frac{n_k}{n}</tex>. Другими словами, <tex>P(k)</tex> равно вероятности того, что отдельно взятая вершина в <tex>G(n, p)</tex> имеет степень <tex>k</tex>. | Распределение степеней <tex>P(k)</tex> графа определяется как доля узлов, имеющих степень <tex>k</tex>. Таким образом, если есть в общей сложности <tex>n</tex> узлов в графе и из них <tex>n_k</tex> имеют степень <tex>k</tex>, то <tex>P(k) = \frac{n_k}{n}</tex>. Другими словами, <tex>P(k)</tex> равно вероятности того, что отдельно взятая вершина в <tex>G(n, p)</tex> имеет степень <tex>k</tex>. | ||
Строка 15: | Строка 19: | ||
== Распределение максимальной степени вершин == | == Распределение максимальной степени вершин == | ||
+ | {{Определение | ||
+ | |id=def_max_degree_dist | ||
+ | |definition='''Распределение максимальной степени вершин случайного графа''' - это функция <tex>Q(x)</tex>, определённая на <tex>\mathbb{R}</tex> как <tex>P(\xi=x)</tex>, то есть выражающая вероятность того, что максимальная степень вершины <tex>\xi</tex> равна <tex>x</tex> | ||
+ | }} | ||
− | Максимальная степень вершины равна <tex>k</tex> тогда и только тогда, когда не существует вершины степенью больше <tex>k</tex>. Таким образом, нужно посчитать вероятность события <tex>A: \exists \; | + | Максимальная степень вершины равна <tex>k</tex> тогда и только тогда, когда не существует вершины степенью больше <tex>k</tex>. Таким образом, нужно посчитать вероятность события <tex>A: \exists v: \; deg(v) = k \;\&\; !\exists v: \; deg(v) > x</tex>. |
− | + | <tex>P(\exists v: \; deg(v) = k) = P(k)</tex> | |
+ | |||
+ | <tex>P(!\exists v: \; deg(v) > k) = \sum_{x=k+1}^{n} (1-P(x))</tex> | ||
+ | |||
+ | События независимы, поэтому получаем: <tex>Q(k) = P(k) \cdot \sum_{x=k+1}^{n} (1-P(x))</tex> | ||
<tex>Q(k) = (n-k)P(k) - P(k)\sum_{x=k+1}^{n} P(x)</tex> | <tex>Q(k) = (n-k)P(k) - P(k)\sum_{x=k+1}^{n} P(x)</tex> |
Версия 00:57, 16 июня 2021
Распределение степеней вершин
Определение: |
Распределение степеней вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что вершина имеет степень
Распределение степеней графа определяется как доля узлов, имеющих степень . Таким образом, если есть в общей сложности узлов в графе и из них имеют степень , то . Другими словами, равно вероятности того, что отдельно взятая вершина в имеет степень .
Случайный граф
имеет биномиальное распределение степеней вершин :
Действительно, если вероятность появления ребра
, то вероятность появления ровно рёбер у вершины равна (схема Бернулли). Таких наборов рёбер у одной вершины всего , откуда получаем искомое распределение.
Распределение максимальной степени вершин
Определение: |
Распределение максимальной степени вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что максимальная степень вершины равна
Максимальная степень вершины равна тогда и только тогда, когда не существует вершины степенью больше . Таким образом, нужно посчитать вероятность события .
События независимы, поэтому получаем: