Участник:Quarter — различия между версиями
Quarter (обсуждение | вклад) |
Quarter (обсуждение | вклад) (→Равномерное распределение) |
||
Строка 24: | Строка 24: | ||
== Равномерное распределение == | == Равномерное распределение == | ||
− | Модель равномерного распределения подразумевает предположение о том, что все графы с <tex>m</tex> рёбрами равновероятны. Здесь имеем <tex>G(n, m)</tex> - граф на <tex>n</tex> вершинах с <tex>m</tex> рёбрами. Задача стоит уже по-другому - распределить <tex>m</tex> рёбер по <tex>{n \choose 2}</tex> местам с точностью до изоморфизма | + | Модель равномерного распределения подразумевает предположение о том, что все графы с <tex>m</tex> рёбрами равновероятны. Здесь имеем <tex>G(n, m)</tex> - граф на <tex>n</tex> вершинах с <tex>m</tex> рёбрами. Задача стоит уже по-другому - распределить <tex>m</tex> рёбер по <tex>{n \choose 2}</tex> местам с точностью до изоморфизма. |
− | |||
− | |||
+ | Так как граф характеризуется последовательностью степеней, её можно переформулировать следующим образом: найдём число [https://neerc.ifmo.ru/wiki/index.php?title=%D0%9D%D0%B0%D1%85%D0%BE%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BA%D0%BE%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%B0_%D1%80%D0%B0%D0%B7%D0%B1%D0%B8%D0%B5%D0%BD%D0%B8%D0%B9_%D1%87%D0%B8%D1%81%D0%BB%D0%B0_%D0%BD%D0%B0_%D1%81%D0%BB%D0%B0%D0%B3%D0%B0%D0%B5%D0%BC%D1%8B%D0%B5 разбиений числа] <tex>2m</tex> на <tex>1...n</tex> слагаемых. Данная задача имеет решение за полиноминальное время. | ||
== Распределение максимальной степени вершин == | == Распределение максимальной степени вершин == |
Версия 01:51, 16 июня 2021
Содержание
Распределение степеней вершин
Определение: |
Распределение степеней вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что вершина в графе имеет степень
Другими словами, распределение степеней графа определяется как доля узлов, имеющих степень .
Пример: |
Если есть в общей сложности | узлов в графе и из них имеют степень , то . Другими словами, равно вероятности того, что отдельно взятая вершина в имеет степень .
Биноминальное распределение
Случайный граф
имеет биномиальное распределение степеней вершин :
Действительно, если вероятность появления ребра
, то вероятность появления ровно рёбер у вершины равна (схема Бернулли). Таких наборов рёбер у одной вершины всего , откуда получаем искомое распределение.Равномерное распределение
Модель равномерного распределения подразумевает предположение о том, что все графы с
рёбрами равновероятны. Здесь имеем - граф на вершинах с рёбрами. Задача стоит уже по-другому - распределить рёбер по местам с точностью до изоморфизма.Так как граф характеризуется последовательностью степеней, её можно переформулировать следующим образом: найдём число разбиений числа на слагаемых. Данная задача имеет решение за полиноминальное время.
Распределение максимальной степени вершин
Определение: |
Распределение максимальной степени вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что максимальная степень вершины в графе равна
Будем выводить формулу для через распределение степеней вершин .
Максимальная степень вершины равна
тогда и только тогда, когда не существует вершины степенью больше . Таким образом, нужно посчитать вероятность события .
- вероятность того, что вершина имеет степень . Тогда вероятность того, что имеет одну из степеней - . Нам нужно обратное событие, при наступлении которого вершина имеет степень больше . Его вероятность равна .
События независимы, поэтому получаем: