XOR-SAT — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Отмена правки 81125, сделанной 2.63.76.55 (обсуждение))
Строка 1: Строка 1:
 
== Описание ==
 
== Описание ==
  
Одним из самых главных особых случаев <tex>\mathrm {SAT}</tex> является класс 8 В задач, где каждый конъюнкт содержит операции <tex>\oplus</tex> (т. е. исключающее или), а не (обычные) <tex>\lor</tex> операторы.Формально, обобщенная КНФ с тернарным  булевым  оператором <tex> R</tex> работает  только если <tex> 1</tex> или <tex> 3</tex> переменные дают <tex> \mathtt {true}</tex> в своих аргументах. Конъюнкты, имеющие более <tex> 3</tex> переменных могут быть преобразованы в сочетании с формулой преобразования с сохранением выполнимости булевой функции, т. е. <tex>\mathrm {XOR}</tex>-<tex>\mathrm {SAT}</tex>  может быть снижена до <tex>\mathrm {XOR}</tex>-<tex>3</tex>-<tex>\mathrm {SAT}</tex><ref>''Alfred V. Aho; John E. Hopcroft; Jeffrey D. Ullman.''The Design and Analysis of Computer Algorithms. Addison-Wesley.; здесь: Thm.10.4, 1974.</ref>
+
Одним из особых случаев <tex>\mathrm {SAT}</tex> является класс задач, где каждый конъюнкт содержит операции <tex>\oplus</tex> (т. е. исключающее или), а не (обычные) <tex>\lor</tex> операторы.Формально, обобщенная КНФ с тернарным  булевым  оператором <tex> R</tex> работает  только если <tex> 1</tex> или <tex> 3</tex> переменные дают <tex> \mathtt {true}</tex> в своих аргументах. Конъюнкты, имеющие более <tex> 3</tex> переменных могут быть преобразованы в сочетании с формулой преобразования с сохранением выполнимости булевой функции, т. е. <tex>\mathrm {XOR}</tex>-<tex>\mathrm {SAT}</tex>  может быть снижена до <tex>\mathrm {XOR}</tex>-<tex>3</tex>-<tex>\mathrm {SAT}</tex><ref>''Alfred V. Aho; John E. Hopcroft; Jeffrey D. Ullman.''The Design and Analysis of Computer Algorithms. Addison-Wesley.; здесь: Thm.10.4, 1974.</ref>
  
 
Это задача [[Класс P|<tex>\mathrm {P}</tex>-класса]], так как <tex>\mathrm {XOR}</tex>-<tex>\mathrm {SAT}</tex> формулу можно рассматривать как систему линейных уравнений по модулю <tex>2</tex>, которая, в свою очередь, может быть решена за <tex>O(n^3)</tex> методом Гаусса <ref>[https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%93%D0%B0%D1%83%D1%81%D1%81%D0%B0 Метод Гаусса]</ref>.Такое представление возможно на основе связи между Булевой алгеброй и Булевым [[Определение кольца, подкольца, изоморфизмы колец|кольцом]] <ref>[https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Boolean_rings Связь между Булевой алгеброй и Булевым кольцом]</ref> и том факте, что арифметика по модулю <tex>2</tex> образует конечное поле <ref>[https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5 Конечное поле ]</ref>.
 
Это задача [[Класс P|<tex>\mathrm {P}</tex>-класса]], так как <tex>\mathrm {XOR}</tex>-<tex>\mathrm {SAT}</tex> формулу можно рассматривать как систему линейных уравнений по модулю <tex>2</tex>, которая, в свою очередь, может быть решена за <tex>O(n^3)</tex> методом Гаусса <ref>[https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%93%D0%B0%D1%83%D1%81%D1%81%D0%B0 Метод Гаусса]</ref>.Такое представление возможно на основе связи между Булевой алгеброй и Булевым [[Определение кольца, подкольца, изоморфизмы колец|кольцом]] <ref>[https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Boolean_rings Связь между Булевой алгеброй и Булевым кольцом]</ref> и том факте, что арифметика по модулю <tex>2</tex> образует конечное поле <ref>[https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5 Конечное поле ]</ref>.

Версия 14:57, 30 июня 2021

Описание

Одним из особых случаев [math]\mathrm {SAT}[/math] является класс задач, где каждый конъюнкт содержит операции [math]\oplus[/math] (т. е. исключающее или), а не (обычные) [math]\lor[/math] операторы.Формально, обобщенная КНФ с тернарным булевым оператором [math] R[/math] работает только если [math] 1[/math] или [math] 3[/math] переменные дают [math] \mathtt {true}[/math] в своих аргументах. Конъюнкты, имеющие более [math] 3[/math] переменных могут быть преобразованы в сочетании с формулой преобразования с сохранением выполнимости булевой функции, т. е. [math]\mathrm {XOR}[/math]-[math]\mathrm {SAT}[/math] может быть снижена до [math]\mathrm {XOR}[/math]-[math]3[/math]-[math]\mathrm {SAT}[/math][1]

Это задача [math]\mathrm {P}[/math]-класса, так как [math]\mathrm {XOR}[/math]-[math]\mathrm {SAT}[/math] формулу можно рассматривать как систему линейных уравнений по модулю [math]2[/math], которая, в свою очередь, может быть решена за [math]O(n^3)[/math] методом Гаусса [2].Такое представление возможно на основе связи между Булевой алгеброй и Булевым кольцом [3] и том факте, что арифметика по модулю [math]2[/math] образует конечное поле [4].
  1. Alfred V. Aho; John E. Hopcroft; Jeffrey D. Ullman.The Design and Analysis of Computer Algorithms. Addison-Wesley.; здесь: Thm.10.4, 1974.
  2. Метод Гаусса
  3. Связь между Булевой алгеброй и Булевым кольцом
  4. Конечное поле