Исчисление кортежей — различия между версиями
(→Примеры) |
(→Объединение) |
||
Строка 25: | Строка 25: | ||
=== Объединение === | === Объединение === | ||
− | Для объединения используется синтаксис перечисления | + | Для объединения используется синтаксис перечисления объединяемых отношений через запятую: |
<font color = red>Отношение1<font color = grey>,</font> Отношение2</font> | <font color = red>Отношение1<font color = grey>,</font> Отношение2</font> | ||
Версия 23:39, 26 декабря 2021
В этом разделе будет рассмотрен один из видов реляционного исчисления — исчисление кортежей.
Содержание
Переменные-кортежи
У каждой переменной-кортежа есть тип — набор атрибутов, для каждого из которых есть домен, а так же набор значений. Такая комбинация в данной модели называется отношением. Из этого следует, что каждая кортежная переменная пробегает некоторое отношение.
Синтаксис
Для каждой переменной берем ее значение из тела соответствующего отношения:
Переменная :: Отношение
Примеры
Мжно задать переменная S, которая пробегает по всем студентам, и переменную G, которая пробегает по всем группам:
S :: Students G :: Groups
Можно записать группы четвертого курса, то есть группы такие, что ее название M34351, M34371 или M34391:
G4 :: Groups where Name = 'M34351' ∨ Name = 'M34371' ∨ Name = 'M34391'
Последний пример демонстрирует, что для отношения можно указать ограничивающее его условие.
Операции с отношениями
Ограничение
Можно ограничить отношение, выбрав те кортежи, которые удовлетворяют требуемым условиям.
Отношения where Условие
Объединение
Для объединения используется синтаксис перечисления объединяемых отношений через запятую:
Отношение1, Отношение2
Примеры
Groups where Name = 'M34371'
G4 :: Groups where Name = 'M34351', Groups where Name = 'M34371', Groups where Name = 'M34391'
Условия
Простые условия
Сравнение атрибутов с константами:
S.Name = 'Иван'
S.Id < 5
Сравнение атрибутов между собой (в том числе и на неравенство):
S.Id $\geq$ G.Id
Сравнение с применением формул:
length(S.FirstName) = length(S.LastName) + 3
Можно использовать любые формулы, зависящие от значений кортежных переменных.
Составные условия
Из простых условий можно строить логические формулы с помощью стандартных связок: $\land$, $\lor$, $\lnot$.
G where Name = 'M34371' ∨ Name = 'M34391'
S where FirstName = 'Иван' ∧ LastName <> 'Иванов'
Условия с кванторами
Поверх логических формул можно навешивать кванторы:
- Всеобщности $\forall$;
- Существования $\exists$.
Синтаксис
Квантор Переменная (Условие)
Примеры
G where $\exists$S (S.FirstName = 'Иван' ∧ S.GId = G.GId)
G where $\forall$S (S.FirstName = 'Иван' ∨ S.GId <> G.GId)
Про каждую переменную известно, из какого она отношения, поэтому при подстановке в квантор рассматриваются только значения переменных из соответствующих отношений.
Примеры
Переменные:
S :: Students; G :: Groups; C :: Courses; P :: Point; G4 :: Groups where Name = 'M34351' ∨ Name = 'M34371' ∨ Name = 'M34391'
Полностью аттестованные группы:
select G.GId from G where $\forall$S ($\forall$C ($\exists$P (S.SId = P.SId $\land$ C.CId = P.CId $\land$ P.Points ≥ 60)))
Несколько отношений:
select S.FirstName, S.LastName, G.Name from S, G where S.GId = G.GId