Дискретное преобразование Фурье — различия между версиями
(→Следствия) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
{{Определение | {{Определение | ||
|definition= | |definition= |
Версия 08:16, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Дискретное преобразование Фурье (англ. Discrete Fourier Transform, DFT) многочлена где — ый из комплексных корней из единицы. называется главным значением корня -ой степени из единицы, а все остальные корни являются его степенями: . | называют вектор значений этого многочлена в точках :
Определение: |
Обратное дискретное преобразование Фурье (англ. Inverse DFT) для вектора значений многочлена
| — вектор коэффициентов этого многочлена :
Содержание
Применение ДПФ
Дискретное преобразование Фурье используют для быстрого перемножения двух полиномов
и .Для того чтобы получить произведение двух многочленов за время, меньшее чем
, необходимо сначала посчитать обоих многочленов. Так как при умножении двух многочленов их значения просто перемножаются в каждой точке. Следовательно, если — это вектор значений многочлена, то мы можем получить значение произведения двух многочленов, просто перемножив их ДПФ. Значит, чтобы получить коэффициенты полученного многочлена, применим обратное ДПФ.
Так как ДПФ многолчена — это вектор его значений, значит, перемножение двух ДПФ требует только быстрое преобразование Фурье.
операций. Осталось только вычислять ДПФ и обратное ДПФ за время . Для этого используем
ДПФ также применяют для быстрого умножения двух длинных чисел, которые в свою очередь могут быть представлены в виде полиномов.
ДПФ в модульной арифметике
В основе ДПФ используются комплексные числа, являющиеся корнями группу, то есть степень одного корня всегда является другим корнем. Среди них есть корень, называемый примитивным.
-ой степени из единицы. Для эффективного вычисления использовались свойства комплексных корней, которые образуютОднако, то же верно и в случае корней
-ой степени из единицы в модульной арифметике. Не для любого модуля найдется различных корней, но такие модули все же существуют. Необходимо найти примитивный корень, то есть:
Как и с комплексными корнями, остальные
корней -ой степени из единицы по модулю можно получить как степени примитивного корняСледствия
Утверждение: |
Применим к обеим частям обратное ДПФ и получим:
Заметим, что слева у нас находится вектор значений многочлена с коэффициентами и обозначим его за . Заметим, что:
Теперь рассмотрим правую часть. По определению, справа у нас находится вектор коэффициентов многочлена со значениями в точках . Обозначим его как , где:
где
Тогда, подставляя значения , получаем:
А так как , получаем:
|
Пример
Посчитаем
для полинома степени .
Тогда подставляя значения
в получаем:
Построим матрицу Вандермонда:
Получаем вектор значений многочлена
:
В итоге получаем:
Аналогично, получаем обратное ДПФ.