Теорема Карпа-Липтона — различия между версиями
(→Доказательство) |
(→Доказательство) |
||
Строка 10: | Строка 10: | ||
Существует C_n для любого fi (для любого x fi(x)=0 <=>C_n(fi)=0). | Существует C_n для любого fi (для любого x fi(x)=0 <=>C_n(fi)=0). | ||
− | Рассмотрим язык L\in Pi_2. Это | + | Рассмотрим язык <tex>L\in Pi_2</tex>. Это означает, что <tex>x\in L \Leftrightarrow \forall{y} \exists{z}: \psi{(x,y,x)}</tex> |
− | Рассмотрим <tex>L_1 = {<x,y>|\exists{z}\psi{(x,y,z)}}</tex> | + | |
− | L_1 \in NP по определению NP | + | Рассмотрим <tex>L_1 = {<x,y>|\exists{z}: \psi{(x,y,z)}}</tex> |
− | L={x| | + | |
− | Нужно доказать что L\in \Sigma_1 | + | <tex>L_1 \in NP</tex> по определению <tex>NP</tex> |
− | L_1\in NP | + | |
+ | <tex>L={x|\forall{y} <x,y>\in{L_1}}</tex> | ||
+ | |||
+ | Нужно доказать что <tex>L\in \Sigma_1</tex> | ||
+ | <tex>L_1\in NP \Rightarrow L_1\le{}_mSAT по карпу с помощью f, т.е. L={x|для любого y f(<x,y>)\in SAT} | ||
f(<x,y>)\in SAT это значит, что для некоторого набора формул выполняется для всего набора, если предположить, что L={x|для любого y C_n(f(<x,y>))=1} | f(<x,y>)\in SAT это значит, что для некоторого набора формул выполняется для всего набора, если предположить, что L={x|для любого y C_n(f(<x,y>))=1} | ||
Версия 14:17, 15 апреля 2010
Формулировка
Теорема Карпа-Липтона
то
Доказательство
Пусть есть логические схемы для
. Например который кодирует символов, разрешимых логической схемой . Размер . Это означает что для фиксированного такая логическая схема , чтоСуществует C_n для любого fi (для любого x fi(x)=0 <=>C_n(fi)=0).
Рассмотрим язык
. Это означает, чтоРассмотрим
по определению
Нужно доказать что
<tex>L_1\in NP \Rightarrow L_1\le{}_mSAT по карпу с помощью f, т.е. L={x|для любого y f(<x,y>)\in SAT} f(<x,y>)\in SAT это значит, что для некоторого набора формул выполняется для всего набора, если предположить, что L={x|для любого y C_n(f(<x,y>))=1}Но надо откуда-то взять этот набор. Можно его угадать, используя квантор существует. Добавим его. Так как NP \in P/poly L={x|существует C_n: C_n решает SAT и для любого y C_n(f(<x,y>))=1} Что означает C_n решает SAT? Нужно переписать с квантором для любого. C_n решает SAT <=> для любого \fi для любого x (если fi(x)=1 то C_n(fi)=1)
Воспользуемся самосведением SAT L={x|существуют C1C2...Cn - набор логических схем для SAT и для любого y C_n(f(<x,y>))=1} Внутри будем проверять используемый набор для любого fi (С_|fi|(fi)=0 => для любого x fi(x)=0) (C_|fi|(fi)=1 => fi|_x1=0 \in SAT или fi|_x1=1 \in SAT) Если C решает SAT то все хорошо, если нет то зафиксируем формулу на которой не решает. Если выдаст 0 а должна выдать 1 то первое не удолветворяет, если наоборот то обе не удовлетворяет.
для любого fi |fi|=m для любого x_1...любого x_m если C_m(fi)=0 => fi(x_1)=0 иначе C_m-1(fi|_x_1=0)=0 => fi|_x1=0(x2)=0 C_m-1(fi|_x1=1)=0 =>fi|_x1=0(x2)=0 C_m-1(fi|x1=0) галочка C_m-1(fi|x1=1)
Получаем что
Теорема доказана