Теорема Ладнера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
'''Теорема Ладнера''' (Ladner's Theorem) утверждает, что если [[Класс P|P]] не совпадает с [[Класс NP|NP]], то существует язык, принадлежащий <tex>\mathrm{NP}</tex>, но не являющийся ни полиномиальным, ни [[NP-полнота|NP-полным]].
 
'''Теорема Ладнера''' (Ladner's Theorem) утверждает, что если [[Класс P|P]] не совпадает с [[Класс NP|NP]], то существует язык, принадлежащий <tex>\mathrm{NP}</tex>, но не являющийся ни полиномиальным, ни [[NP-полнота|NP-полным]].
  

Текущая версия на 19:35, 4 сентября 2022

Теорема Ладнера (Ladner's Theorem) утверждает, что если P не совпадает с NP, то существует язык, принадлежащий [math]\mathrm{NP}[/math], но не являющийся ни полиномиальным, ни NP-полным.

Иллюстрация

Определим язык [math]A[/math] как множество таких формул [math]\alpha[/math], что [math]\left\lfloor \frac{1}{2}\log_{10}^*|\alpha|\right\rfloor[/math] чётно. Иными словами, [math]A[/math] — это язык формул с длинами, лежащими в промежутках [math]\left[1,10^{10}\right), \left[\underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_4, \underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_6\right), \ldots[/math] Далее будем обозначать [math]\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_n[/math] как [math]^{n}a[/math].

Рассмотрим язык SAT всех удовлетворимых формул. Логично предположить, что как в [math]A[/math], так и в [math]\bar{A}[/math] лежит бесконечное множество элементов из [math]\mathrm{SAT}[/math], не распознаваемых за полиномиальное время, поэтому [math]\mathrm{SAT} \cap A \not\in \mathrm{P}[/math]. Из [math]A \in \mathrm{P}[/math] и [math]\mathrm{SAT} \in \mathrm{NP}[/math] следует, что [math]\mathrm{SAT} \cap A \in \mathrm{NP}[/math].

Осталось показать, что [math]\mathrm{SAT} \cap A[/math] не является NP-полным. Пусть это не так. Тогда из NP-полноты следует, что существует полиномиальная функция [math]f[/math], сводящая по Карпу [math]\mathrm{SAT}[/math] к [math]\mathrm{SAT} \cap A[/math].

Возьмём формулу [math]\varphi[/math] длиной [math]^{2k+1}10[/math]. Она не лежит в [math]A[/math] и, следовательно, в [math]\mathrm{SAT} \cap A[/math]. Функция [math]f[/math] не может перевести [math]\varphi[/math] в промежуток [math]\left[^{2k+2}10, ^{2k+4}10\right)[/math] или дальше, так как размер выхода полиномиальной функции не может быть экспоненциально больше длины входа. Значит, [math]\varphi[/math] отображается в меньший промежуток, но в этом случае размер выхода экспоненциально меньше длины входа. Добавляя к этому то, что проверку на принадлежность [math]f(\varphi)[/math] к [math]\mathrm{SAT} \cap A[/math] можно осуществить за [math]O(2^{poly})[/math] (это следует из её принадлежности классу [math]\mathrm{NP}[/math]), получаем программу, разрешающую [math]\varphi[/math] за полином. Утверждение о том, что все формулы [math]\varphi[/math] длиной [math]^{2k+1}10[/math] принадлежат классу [math]\mathrm{P}[/math], скорее всего неверно, и, следовательно, язык [math]\mathrm{SAT} \cap A[/math] не является NP-полным.

Заметим, что это объяснение не является доказательством!

Теорема

Теорема (Ладнер):
[math]\mathrm{P} \neq \mathrm{NP} \Rightarrow \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC}) \neq \varnothing[/math].
Доказательство:
[math]\triangleright[/math]

Предположим, что [math]\mathrm{P} \neq \mathrm{NP}[/math]. Из этого следует, что никакой [math]\mathrm{NP}[/math]-полный язык (например, SAT) нельзя свести по Карпу к полиномиальному. Будем искать такой язык [math]A[/math], чтобы язык [math]L = \mathrm{SAT} \cap A[/math] удовлетворял следующим условиям:

  1. [math]L \in \mathrm{NP}[/math] (для этого достаточно, чтобы выполнялось [math]A \in \mathrm{P}[/math]);
  2. [math]L \not \in \mathrm{P}[/math];
  3. [math]\mathrm{SAT} \not \le L[/math].

Если выполнены все три свойства, то [math]L \in \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC})[/math].

Пусть [math]M_1, \ldots, M_n, \ldots[/math] — все машины Тьюринга из [math]\tilde{\mathrm{P}}[/math] (возможно, с повторениями), расположенные в таком порядке, чтобы [math]T(M_i, x) \le |x|^i[/math] для любого [math]x \in \Sigma^*[/math].

Пусть [math]f_1, \ldots, f_n, \ldots[/math] — аналогичное множество полиномиальных функций: [math]T(f_i, x) \le |x|^i[/math] для любого [math]x \in \Sigma^*[/math].

Для простоты будем считать, что [math]|\Sigma| = 2[/math]. Построим такую неубывающую функцию [math]g \in \tilde{\mathrm{P}}[/math], что при [math]A = \{x \in \Sigma^*: g(|x|) \equiv 0 \pmod{2} \}[/math] для [math]L[/math] выполняются три перечисленных свойства.

Алгоритм построения g

Положим [math]g(0) = g(1) = 1[/math]. Для [math]n \ge 1[/math] построим [math]g(n + 1)[/math] рекурсивно — с помощью [math]g(0), g(1), \ldots, g(n)[/math].

  • Если [math](\log_2 n)^{g(n)} \ge n[/math], то [math]g(n+1) := g(n)[/math]. Иначе выполняем один из следующих пунктов.
  • Пусть вычисленное значение [math]g(n) = 2 i[/math]. Определим [math]g(n+1)[/math] следующим образом:
for [math]x[/math] : [math]|x| \le \log_2 n[/math]
  if [math]M_i(x)[/math] and [math][g(|x|) \equiv 1 \pmod{2}[/math] or [math]x \not \in \mathrm{SAT}][/math]
    [math]g(n+1) := g(n)+1[/math]
    return
  if [math]! M_i(x)[/math] and [math][g(|x|) \equiv 0 \pmod{2}[/math] and [math]x \in \mathrm{SAT}][/math]
    [math]g(n+1) := g(n)+1[/math]
    return
[math]g(n+1) := g(n)[/math]
  • Пусть вычисленное значение [math]g(n) = 2 i - 1[/math]. Определим [math]g(n+1)[/math] следующим образом:
for [math]x[/math] : [math]|x| \le \log_2 n, |f_i(x)| \le \log_2 n[/math]
  if [math]x \in \mathrm{SAT}[/math] and [math][g(|f_i(x)|) \equiv 1 \pmod{2}[/math] or [math]f_i(x) \not \in \mathrm{SAT}][/math]
    [math]g(n+1) := g(n)+1[/math]
    return
  if [math]x \not \in \mathrm{SAT}[/math] and [math][g(|f_i(x)|) \equiv 0 \pmod{2}[/math] and [math]f_i(x) \in \mathrm{SAT}][/math]
    [math]g(n+1) := g(n)+1[/math]
    return
[math]g(n+1) := g(n)[/math]

Корректность алгоритма

Проверим выполнение второго и третьего свойств языка [math]L = \mathrm{SAT} \cap A[/math].

  • Пусть [math]g(n)[/math] не имеет предела при [math]n \to \infty[/math]. Значит, для любой [math]M_i[/math] в [math]L[/math] существует элемент, на котором [math]M_i[/math] «ошибается»; аналогично, для любой полиномиальной функции [math]f_i[/math] существует элемент, на котором [math]f_i[/math] неверно сводит [math]\mathrm{SAT}[/math] к [math]L[/math]. Оба свойства выполнены.
  • Пусть [math]\lim\limits_{n \to \infty} g(n) = 2i[/math]. Значит, в нашем множестве существует такая машина Тьюринга [math]M_i[/math], распознающая [math]L[/math], что [math]\forall x \Rightarrow M_i(x) = [g(|x|) \equiv 0 \pmod{2} \wedge x \in \mathrm{SAT}][/math]. С одной стороны, [math]M_i[/math] работает за полином, и [math]L \in \mathrm{P}[/math]. С другой стороны, по определению [math]A[/math], [math]L[/math] различается с [math]\mathrm{SAT}[/math] в конечном числе элементов, значит [math]\mathrm{SAT} \le L[/math]. Получено противоречие с предположением [math]\mathrm{P} \neq \mathrm{NP}[/math].
  • Пусть [math]\lim\limits_{n \to \infty} g(n) = 2i + 1[/math]. Тогда в нашем множестве полиномиальных функций существует [math]f_i : \forall x \Rightarrow [x \in SAT] = [g(|f_i(x)|) \equiv 0 \pmod{2} \wedge f_i(x) \in \mathrm{SAT}][/math]. С одной стороны, [math]\mathrm{SAT} \le L[/math] с помощью [math]f_i[/math]. С другой стороны, из определения [math]A[/math] выходит, что язык [math]L[/math] конечен, значит [math]L \in \mathrm{P}[/math]. Снова получено противоречие с предположением.

Таким образом, при верности предположения [math]\mathrm{P} \neq \mathrm{NP}[/math] второе и третье свойства [math]L[/math] выполнены.

Время работы алгоритма

Проверим выполнение первого свойства языка [math]L[/math]. Для этого достаточно установить полиномиальность [math]A[/math]. Покажем, что [math]T(g, n)[/math] отличается от [math]T(g, n - 1)[/math] не более, чем на неубывающий полином [math]p(n)[/math]. Из этого будет следовать полиномиальность [math]g[/math]: [math]T(g, n) \le p(n) + p(n - 1) + \ldots + p(1) \le n p(n) \in poly(n)[/math].

Заметим, что [math]g(n) \le n[/math] по построению для [math]n \ge 1[/math].

Вычисление значения [math]g(n+1)[/math] состоит из вычисления [math]g(n)[/math], проверки неравенства [math](\log_2 n)^{g(n)} \ge n[/math] и, возможно, запуска одной из двух внутренних функций, время выполнения которых составляет:

  • для случая [math]g(n) = 2 i[/math]:
    [math]\parbox{0px}{ \begin{align*} T(n) & \le 2^{\log_2 n} (T(M_i, x) + T(g, |x|) + T(x \in \mathrm{SAT})) \le \\ & \le k_1 n (|x|^i + T(g, |x|) + 2^{|x|}|x|) \le \\ & \le k_1 n ((\log_2 n)^{g(n)} + T(g, \log_2 n) + 2^{\log_2 n} \log_2 n) \le \\ & \le k_1 (n^2 + n^2 \log_2 n + n T(g, \log_2 n)) \le \\ & \le k_1 (2n^3 + n T(g, \log_2 n)); \end{align*} }[/math]
  • для случая [math]g(n) = 2 i - 1[/math]:
    [math]\parbox{0px}{ \begin{align*} T(n) & \le 2^{\log_2 n} (T(x \in \mathrm{SAT}) + T(g, |f_i(x)|) + T(f_i(x) \in \mathrm{SAT})) \le \\ & \le k_2 n (2^{\log_2 n} \log_2 n + T(g, \log_2 n) + 2^{\log_2 n} \log_2 n) \le \\ & \le k_2 (2n^2 \log_2 n + n T(g, \log_2 n)) \le \\ & \le k_2 (2n^3 + n T(g, \log_2 n)). \end{align*} }[/math]

Вычислить [math](\log_2 n)^{g(n)}[/math] можно за [math]k_3 \log_2 g(n) |(\log_2 n)^{g(n)}|^2 \le k_3 (g(n) |log_2 n|)^2 log_2 n \le k_3 n^3[/math].

Таким образом, [math]T(g, n) \le T(g, n-1) + k (n^3 + n T(g, \log_2 n))[/math].

Пусть [math]T(g, 1) = d[/math]. Существует константа [math]c \ge d[/math], для которой при любом [math]n[/math] верно [math]c (n-1)^4 + k n^3 + k n c (\log_2 n)^4 \le c n^4[/math].

Тогда, в силу [math]T(g, 1) = d \le c \cdot 1^4[/math] и неравенства строкой выше, по индукции легко доказать, что [math]T(g, n)[/math] ограничено сверху [math]c n^4[/math], то есть [math]g \in \tilde{\mathrm{P}}[/math], а, в свою очередь, [math]A \in \mathrm{P}[/math].
[math]\triangleleft[/math]

Источник