|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| Одно из наиболее привлекательных свойств рациональных [[Производящая функция|производящих функций]] {{---}} их замкнутость относительно произведения Адамара. | | Одно из наиболее привлекательных свойств рациональных [[Производящая функция|производящих функций]] {{---}} их замкнутость относительно произведения Адамара. |
| {{Определение | | {{Определение |
Текущая версия на 19:26, 4 сентября 2022
Одно из наиболее привлекательных свойств рациональных производящих функций — их замкнутость относительно произведения Адамара.
Определение: |
Произведением Адамара (англ. Hadamard product) производящих функций [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math] называется производящая функция [math]A(s) \circ B(s) = (a_0 b_0) + (a_1 b_1) s + (a_2 b_2) s^2 + \dots[/math]. |
Таким образом, произведение Адамара двух последовательностей — это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в задаче о числе счастливых билетов нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена [math]A_3[/math]. Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно [math]a_n[/math], а число объектов второго типа [math]b_n[/math] то число пар объектов, составленных из элементов первого и второго типа, равно [math]a_n b_n[/math].
Рациональность произведения Адамара
Лемма: |
Производящая функция для последовательности [math]a_0, a_1,
a_2, \dots[/math] рациональна тогда и только тогда, когда существуют такие числа [math]q_1, \dots, q_l[/math] и такие многочлены [math]p_1(n),
\dots, p_l(n)[/math], что начиная с некоторого номера [math]n[/math]
[math]a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n.[/math]
Выражение в правой части равенства называется квазимногочленом (англ. quasypolynomial) от переменной [math]n[/math]. |
Доказательство: |
[math]\triangleright[/math] |
[math]\Rightarrow[/math]
Заметим прежде всего, что производящая функция [math](1 - q s)^{-k}[/math] имеет вид
[math](1 - q s)^{-k} = 1 - \begin{pmatrix} -k \\ 1 \end{pmatrix} q s + \begin{pmatrix} -k \\ 2 \end{pmatrix} q^{2} s^{2} - \begin{pmatrix} -k \\ 3 \end{pmatrix} q^{3} s^{3} + \dots = [/math]
- [math] = 1+ \begin{pmatrix} k \\ 1 \end{pmatrix} q s + \begin{pmatrix} k+1 \\ 2 \end{pmatrix} q^{2} s^{2} + \begin{pmatrix} k+2 \\ 3 \end{pmatrix} q^{3} s^{3} + \dots =[/math]
- [math] = 1 + \begin{pmatrix} k \\ k-1 \end{pmatrix} q s + \begin{pmatrix} k+1 \\ k-1 \end{pmatrix} q^{2} s^{2} + \begin{pmatrix} k+2 \\ k-1 \end{pmatrix}q^{3} s^{3} + \dots[/math]
Коэффициент при [math]s^n[/math] в этой производящей функции равен
[math]\dfrac{(n + 1)(n + 2)\dots(n + k - 1)}{(k - 1)!} q^{n} = P_{k - 1}(n) q^{n}[/math],
где [math]P_{k - 1}(n)[/math] — многочлен от [math]n[/math] степени [math]k - 1[/math]. Всякая рациональная функция от переменной [math]s[/math] представляется в виде линейной комбинации многочлена и элементарных дробей вида [math](1 - q_i s)^{-k_i}[/math], поэтому коэффициенты соответствующей производящей функции являются квазимногочленами.
[math]\Leftarrow[/math]
Наоборот, предположим, что коэффициенты производящей функции, начиная с некоторого номера, представляются в виде квазимногочлена. Покажем, что в случае квазимногочлена [math]p(n) q^{n}[/math] соответствующая производящая функция рациональна. Пусть степень многочлена [math]p[/math] равна [math]k - 1[/math]. Многочлены [math]P_0, P_1, \dots, P_{k - 1}[/math], определенные равенством [math]\dfrac{(n + 1)(n + 2)\dots(n + k - 1)}{(k - 1)!} q^{n} = P_{k - 1}(n) q^{n}[/math], образуют базис в пространстве многочленов степени не выше [math] k - 1[/math]. Действительно, любая последовательность многочленов степеней [math]0, 1, \dots, k - 1[/math] образует базис в этом пространстве. Поэтому многочлен [math]p[/math] представляется в виде линейной комбинации многочленов [math]P_i[/math] и соответствующая производящая функция есть просто линейная комбинация функций [math](1 - q s)^{-j}[/math], [math]j = 0, 1, \dots, k - 1[/math].
Для произвольного квазимногочлена мы получаем линейную комбинацию функций такого вида при разных [math]q_i[/math]. |
[math]\triangleleft[/math] |
Теорема: |
Предположим, что производящие функции для последовательностей [math]a_0, a_1, a_2, \dots[/math] и [math]b_0, b_1, b_2, \dots[/math]
[math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math]
являются рациональными. Значит производящая функция для их произведения Адамара
[math]A(s) \circ B(s) = (a_0 b_0) + (a_1 b_1) s + (a_2 b_2) s^2 + \dots[/math].
является тоже рациональной. Проще говоря, произведение Адамара двух рациональных производящих функций рационально. |
Доказательство: |
[math]\triangleright[/math] |
Для доказательства теоремы осталось заметить, что произведение квазимногочленов является квазимногочленом. Это утверждение непосредственно вытекает из формулы [math]a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n[/math]. |
[math]\triangleleft[/math] |
Примеры применения теоремы
Задача: |
Представьте в виде квазимногочлена коэффициент производящей функции [math]A(s)=\dfrac{1 + 2s}{(1 - 2s)(1 + 3s)}[/math]. |
Разобьем дробь на сумму простых дробей: [math]A(s)=\dfrac{1 + 2s}{(1 - 2s)(1 + 3s)}=\dfrac{1/5}{1 + 3s} + \dfrac{4/5}{1 - 2s}[/math].
Воспользуемся результатом леммы: коэффициент при [math]s^n[/math] равен [math]\dfrac{(n + 1)(n + 2)\dots(n + k - 1)}{(k - 1)!} q^{n}[/math].
Для первой дроби [math]k = 1,\, q = -3[/math], для второй: [math]k = 1,\, q = 2[/math].
Тогда [math]a_{n} = \dfrac{1}{5} \cdot \dfrac{1}{(1 - 1)!} (-3)^{n} + \dfrac{4}{5} \cdot \dfrac{1}{(1 - 1)!} (2)^{n} =
\dfrac{(-3)^{n}}{5} + \dfrac{4}{5} \cdot 2^{n} [/math].
Задача: |
Представьте в виде квазимногочлена коэффициент производящей функции [math]A(s)=\dfrac{s^2}{(1 - 2s)^{2}(1 + s)(1 - s)}[/math]. |
Разобьем на сумму простых дробей: [math]A(s)=\dfrac{s^2}{(1 - 2s)^{2}(1 + s)(1 - s)} = \dfrac{1/18}{1 + s} + \dfrac{-8/9}{1 - 2s} + \dfrac{1/3}{(1 - 2s)^2} + \dfrac{1/2}{1 - s}[/math].
Первая дробь: [math]k = 1,\, q = -1[/math], вторая: [math]k = 1,\, q = 2[/math], третья: [math]k = 2,\, q = 2[/math], четвертая: [math]k = 1,\, q = 1[/math].
Тогда, используя лемму, получаем, что [math]a_{n} = \dfrac{(-1)^n}{18} - \dfrac{8}{9} \cdot 2^n + \dfrac{n + 1}{(2 - 1)!} \cdot 2^n + \dfrac{1}{2}\cdot 1^n = \left(n + \dfrac{1}{9}\right) \cdot 2^n + (-1)^{n}\dfrac{1}{18} + \dfrac{1}{2}[/math].
См. также
Источники информации