Пространство линейных операторов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
Рассмотрим <tex>X \times Y = \{</tex> все Л.О. <tex>\mathcal{A} \colon X \to Y\}</tex> <br>
 
Рассмотрим <tex>X \times Y = \{</tex> все Л.О. <tex>\mathcal{A} \colon X \to Y\}</tex> <br>
  

Текущая версия на 19:21, 4 сентября 2022

Рассмотрим [math]X \times Y = \{[/math] все Л.О. [math]\mathcal{A} \colon X \to Y\}[/math]


Определение:
Пусть [math]\mathcal{A}, \mathcal{B} \colon X \to Y;\quad \mathcal{A}, \mathcal{B} \in X \times Y[/math]
Отображение [math]\mathcal{C}[/math] называется суммой [math]\mathcal{A}[/math] и [math]\mathcal{B}\ (\mathcal{C} = \mathcal{A} + \mathcal{B})[/math], если [math]\forall x \in X \colon \mathcal{C}x = \mathcal{A}x + \mathcal{B}x[/math]


Определение:
Пусть [math]\mathcal{A} \colon X \to Y;\quad \mathcal{A} \in X \times Y[/math]
Отображение [math]\mathcal{D}[/math] называется произведением [math]\mathcal{A}[/math] на число [math]\lambda\ (\mathcal{D} = \mathcal{A} \cdot \lambda)[/math], если [math]\forall x \in X \colon \mathcal{D}x = \lambda \mathcal{A}x[/math]


Лемма:
[math]\mathcal{C}[/math] и [math]\mathcal{D}[/math] — суть(являются) линейные операторы
Доказательство:
[math]\triangleright[/math]

Покажем, что:

  1. [math]\mathcal{C}(x_1 + x_2) = \mathcal{C}x_1 + \mathcal{C}x_2[/math]
  2. [math]\mathcal{C}(\lambda x) = \lambda \mathcal{C}x[/math]
Аналогично, покажем то же самое для [math]\mathcal{D}[/math]
[math]\triangleleft[/math]


Теорема:
[math]X \times Y[/math] — линейное пространство над полем [math]F[/math]
Доказательство:
[math]\triangleright[/math]

Проверим все 8 аксиом лп. Все они будут выполняться:

  1. [math]\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}[/math], для любых [math]\mathbf{x}, \mathbf{y}\in X \times Y[/math] (коммутативность сложения);
  2. [math]\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}[/math], для любых [math]\mathbf{x}, \mathbf{y}, \mathbf{z} \in X \times Y[/math] (ассоциативность сложения);
  3. существует такой элемент [math]\theta \in X \times Y[/math], что [math]\mathbf{x} + \theta = \mathbf{x}[/math] для любого [math]\mathbf{x} \in X \times Y[/math] (существование нейтрального элемента относительно сложения), в частности [math]X \times Y[/math] не пусто;
  4. для любого [math]\mathbf{x} \in X \times Y[/math] существует такой элемент [math]-\mathbf{x} \in X \times Y[/math], что [math]\mathbf{x} + (-\mathbf{x}) = \theta[/math] (существование противоположного элемента относительно сложения).
  5. [math]\alpha(\beta\mathbf{x}) = (\alpha\beta)\mathbf{x}[/math] (ассоциативность умножения на скаляр);
  6. [math]1\cdot\mathbf{x} = \mathbf{x}[/math] (унитарность: умножение на нейтральный (по умножению) элемент поля F сохраняет вектор).
  7. [math](\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}[/math] (дистрибутивность умножения на вектор относительно сложения скаляров);
  8. [math]\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}[/math](дистрибутивность умножения на скаляр относительно сложения векторов).
[math]\triangleleft[/math]


Определение:
[math]X \times Y[/math] называется прямым произведением пространств [math]X[/math] и [math]Y[/math]


Лемма:
Пусть [math]\mathcal{A} \leftrightarrow A[/math], [math]\mathcal{B} \leftrightarrow B[/math], [math]\mathcal{C} \leftrightarrow C[/math], [math]\mathcal{D} \leftrightarrow D[/math]

[math] \mathcal{C} = \mathcal{A} + \mathcal{B}[/math], [math] \mathcal{D} = \lambda \mathcal{A}[/math]

Тогда: [math]C = A + B;\quad D = \lambda A[/math]


Теорема:
Пусть [math]F_n^m = \{[/math] все матрицы [math]A_{[m \times n]} = \begin{Vmatrix} \alpha^i_k \end{Vmatrix},\ \alpha^i_k \in F \}[/math]
[math]X \times Y[/math] изоморфно [math]F_n^m[/math]
Доказательство:
[math]\triangleright[/math]

[math] \mathcal{A} \overset{\underset{\mathrm{!}}{}}{\longleftrightarrow} A[/math] (единственным образом)

[math] \{e_i\}_{i=0}^{n}[/math] — базис [math]X ;\quad \{h_k\}_{k=0}^{m}[/math] — базис [math]Y[/math]

Рассмотрим [math]\mathcal{E}_k^i \colon X \to Y [/math] по формуле [math]\mathcal{E}_k^i x \overset{\underset{\mathrm{def}}{}}{=} \xi^{i} h_k; \quad x \overset{\underset{\mathrm{!}}{}}{=} \sum\limits_{i=0}^{n} \xi^i e_i[/math]

Матрица [math]\mathcal{E}^i_k e_j = \delta^i_j h_k[/math]

[math]e_j = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j[/math]

[math]\mathcal{E}^i_k \longleftrightarrow E^i_k = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ & \vdots & \ & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ & \vdots & \ & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \end{pmatrix} \leftarrow h_k \\ [/math]

Базис [math]F_n^m[/math] состоит из таких же матриц
[math]\triangleleft[/math]
Теорема:
[math]\{\mathcal{E}^i_k\}^{i = \overline{1, n}}_{k = \overline{1, m}}\ [/math] — базис [math]X \times Y[/math]

Ссылки

Источники

  • Анин конспект