Степенные ряды — различия между версиями
Komarov (обсуждение | вклад) м |
(→Радиус сходимости: вроде так правильней) |
||
Строка 87: | Строка 87: | ||
Второй пункт доказывается аналогично радикальным признаком Коши. | Второй пункт доказывается аналогично радикальным признаком Коши. | ||
− | При <tex>\sqrt[n]{| a_n x^n |} = \sqrt[n]{|a_n|} |x| \to q |x| </tex>. При <tex> q < 1</tex> - ряд сходится, значит <tex>|x| < \frac1q </tex> | + | При <tex>\sqrt[n]{| a_n x^n |} = \sqrt[n]{|a_n|} |x| \to q |x| </tex>. При <tex> q |x| < 1</tex> - ряд сходится, значит <tex>|x| < \frac1q </tex> |
}} | }} | ||
Версия 18:35, 12 июня 2011
Определение
Определение: |
Ряд | — степенной ряд.
Сделаем замену . Тогда этот ряд превращается в
. Поэтому, далее будем рассматривать только ряды с , переход к общему случаю получается сдвигом.
Лемма Абеля
Вся теория степенных рядов основана на лемме Абеля.
Лемма (Абель): |
Пусть для некоторого — сходится.
Тогда ряд сходится. |
Доказательство: |
Так как - сходится, то , — сходится, поэтому, интересующий наш ряд мажорируется сходящимся числовым рядом, значит, он тоже сходится. |
Радиус сходимости
Можно определить важнейшую для теории величину — радиус сходимости ряда.
Определение: |
— сходится . Заметим, что возможны случаи и . |
Теорема: |
Пусть есть ряд и — его радиус сходимости. Тогда
1) ряд абсолютно сходится.2) ряд сходится абсолютно и равномерно.3) 4) ряд расходится. — неопределённость. |
Доказательство: |
1) по определению точной верхней грани, , и ряд сходится. Тогда по лемме Абеля получаем требуемое.2) . По пункту 1, — абсолютно сходится, значит, к на применим признак Вейерштрасса равномерной сходимости рядов, откуда всё следует. 3) Следствие определения радиуса сходимости. 4) Ну неопределённость |
Возникает вопрос: "Как найти ?". В большинстве случаев достаточно следующей теоремы:
Теорема: |
Пусть есть , — его радиус сходимости. Тогда:
1) Если , то .2) Если Замечание: на самом деле, есть формула Коши-Адамара, применимая в любом случае: , то . |
Доказательство: |
Докажем первый пункт. Второй доказывается аналогично. Рассмотрим и применим к нему признак Даламбера.. Тогда, по признаку Даламбера, при ряд сходится, при ряд расходится. Итого: — ряд сходится, — ряд расходится.Сопоставим с определением и получим .Второй пункт доказывается аналогично радикальным признаком Коши. При . При - ряд сходится, значит |
Примеры
Примеры.
, ,, ,
, ,
может принимать все значения .
Возникает вопрос. Подставим в вместо - .
. Однако, сумма как функция определена для всех . Как это объяснить? Ответ: "В это объяснить нельзя. Нужно использовать ".
. Тут есть корни знаменателя. Этим фактом объясняется усечённый характер этого равенства.
Произведение степенных рядов
По теореме о радиусе сходимости, на промежутке сходимости ряд сходится абсолютно. Если взять два степенных ряда, то на общей части их промежутка сходимости, ряды будут абсолютно сходиться, и, значит, с ними можно делать любые арифметические действия. В частности, их можно умножать по Коши:
, .
Вывод: произведение двух степенных рядов по правилу Коши — степенной ряд с суммой, равной произведению сумм исходных рядов.
По теореме о радиусе сходимости, на любом отрезке из
степенной ряд сходится равномерно.Значит, по теоремам о почленном дифференцировании и интегрировании рядов, их можно дифференцировать и интегрировать, и опять будет получаться сходящийся степенной ряд.
Вопрос: "Каковы будут радиусы сходимости почленно проинегрированных или продифференцированных рядов?"
Ответ: "Почленное интегрирование или дифференцирование не меняет радиуса сходимости ряда".
Утверждение: |
Промежуток сходимости степенного ряда совпадает с промежутком сходимости продифференцированного степенного ряда |
Если , то ,Выясним, что для и одинаковые радиусы сходимости.Продифференцируем ряд и домножим полученный ряд на .
. То есть, , для которого сходится , будет сходиться и . Поэтому, промежуток сходимости продифференцированного ряда Обратное промежутку сходимости исходного ряда. |