Многомерное дерево отрезков — различия между версиями
VVolochay (обсуждение | вклад) |
|||
Строка 7: | Строка 7: | ||
Рассмотрим процесс построения предельного случая при <tex>p = 2</tex>. | Рассмотрим процесс построения предельного случая при <tex>p = 2</tex>. | ||
Пусть задан массив элементов размера <tex>n \times m</tex>.Упорядочим массив по первой координате и построим на нем дерево отрезков.После этого для каждого узла дерева строим еще одно дерево отрезков по координате <tex>y</tex>, которые находятся на том же отрезке. | Пусть задан массив элементов размера <tex>n \times m</tex>.Упорядочим массив по первой координате и построим на нем дерево отрезков.После этого для каждого узла дерева строим еще одно дерево отрезков по координате <tex>y</tex>, которые находятся на том же отрезке. | ||
+ | |||
+ | [[Файл:Многомерное до.jpg]] | ||
==Анализ и оценка структуры== | ==Анализ и оценка структуры== |
Версия 08:56, 15 июня 2011
Дерево отрезков можно обобщить в многомерный случай.
Построение
Пусть задано
-мерное пространство с координатными осями .Т.к. при построении одномерного дерева, индексы массива разбиваются на отрезки, тогда при построении многомерного дерева координаты будут обрабатываться сначала по , затем по и так далее...Далее дерево строится рекурсивно: далее координаты по обрабатываем по координатам , (по всем возможным координатам)и далее по аналогии...То есть получается, что основная идея построения многомерного дерева отрезков - вкладывание деревьев отрезка друг в друга.Пример двумерного дерева
Рассмотрим процесс построения предельного случая при
. Пусть задан массив элементов размера .Упорядочим массив по первой координате и построим на нем дерево отрезков.После этого для каждого узла дерева строим еще одно дерево отрезков по координате , которые находятся на том же отрезке.Анализ и оценка структуры
Строится такое дерево за линейное время. Структура использует
памяти, и отвечает на запрос за , где -размерность дерева.Ответ на запрос в таком дереве будет производиться так же,как и построение: сначала по координате
, затем, когда дошли до какой-либо вершины по первой координате, вызвать от этого же дерева по и так далее.Получается, что для мерного дерева запрос выполняется за (для рассмотренного двумерного дерева будет )