Многомерное дерево отрезков — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
Рассмотрим процесс построения предельного случая при <tex>p = 2</tex>.
 
Рассмотрим процесс построения предельного случая при <tex>p = 2</tex>.
 
Пусть задан массив элементов  размера <tex>n \times m</tex>.Упорядочим массив по первой координате и построим на нем дерево отрезков.После этого для каждого узла дерева строим еще одно дерево отрезков по координате <tex>y</tex>, которые находятся на том же отрезке.  
 
Пусть задан массив элементов  размера <tex>n \times m</tex>.Упорядочим массив по первой координате и построим на нем дерево отрезков.После этого для каждого узла дерева строим еще одно дерево отрезков по координате <tex>y</tex>, которые находятся на том же отрезке.  
 +
 +
[[Файл:Многомерное до.jpg]]
  
 
==Анализ и оценка структуры==
 
==Анализ и оценка структуры==

Версия 08:56, 15 июня 2011

Дерево отрезков можно обобщить в многомерный случай.

Построение

Пусть задано [math]p[/math]-мерное пространство с координатными осями [math]x_1, x_2, x_3...x_p[/math].Т.к. при построении одномерного дерева, индексы массива разбиваются на отрезки, тогда при построении многомерного дерева координаты будут обрабатываться сначала по [math]x_1 [/math], затем по [math]x_2[/math] и так далее...Далее дерево строится рекурсивно: далее координаты по [math]x_1[/math] обрабатываем по координатам [math]x_2[/math], [math]x_3[/math](по всем возможным координатам)и далее по аналогии...То есть получается, что основная идея построения многомерного дерева отрезков - вкладывание деревьев отрезка друг в друга.

Пример двумерного дерева

Рассмотрим процесс построения предельного случая при [math]p = 2[/math]. Пусть задан массив элементов размера [math]n \times m[/math].Упорядочим массив по первой координате и построим на нем дерево отрезков.После этого для каждого узла дерева строим еще одно дерево отрезков по координате [math]y[/math], которые находятся на том же отрезке.

Многомерное до.jpg

Анализ и оценка структуры

Строится такое дерево за линейное время. Структура использует [math]O(n^p)[/math] памяти, и отвечает на запрос за [math]O(log^{p} n)[/math], где [math]p[/math]-размерность дерева.

Ответ на запрос в таком дереве будет производиться так же,как и построение: сначала по координате [math]x_1[/math], затем, когда дошли до какой-либо вершины по первой координате, вызвать от этого же дерева по [math]x_2[/math] и так далее.Получается, что для [math]n-[/math]мерного дерева запрос выполняется за [math]O(log (s_{x_1})* log (s_{x_2})...log (s_{x_n})[/math] (для рассмотренного двумерного дерева будет [math]log (n) * log (m) [/math] )