Сжатое многомерное дерево отрезков — различия между версиями
(→Анализ полученной структуры) |
|||
Строка 3: | Строка 3: | ||
Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\,...\,,(z_a,z_b)</tex> | Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\,...\,,(z_a,z_b)</tex> | ||
}} | }} | ||
− | Вообще говоря, с поставленной задачей справится и обычное <tex>p</tex>-мерное дерево отрезков. Для этого достаточно на <tex>i</tex>-том уровне вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за <tex>O(log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти. | + | Вообще говоря, с поставленной задачей справится и обычное <tex>p</tex>-мерное дерево отрезков. Для этого достаточно на <tex>i</tex>-том уровне вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за <tex>O(\log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти. |
==Оптимизация== | ==Оптимизация== |
Версия 00:41, 16 июня 2011
Задача: |
Пусть имеется множество | , состоящее из взвешенных точек в -мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в -мерном прямоугольнике
Вообще говоря, с поставленной задачей справится и обычное
-мерное дерево отрезков. Для этого достаточно на -том уровне вложенности строить дерево отрезков по всевозможным -тым координатам точек множества , а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за времени, а сама структура данных будет занимать памяти.Содержание
Оптимизация
Для уменьшения количества занимаемой памяти можно провести оптимизацию
-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества , лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества , а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были "исключены" и заведомо лежат вне желаемого -мерного прямоугольника. Такое "усеченное" многомерное дерево отрезков называется сжатым.Построение дерева
Рассмотрим алгоритм построения сжатого дерева отрезков на следующем примере:
- Cоставим массив из всех элементов множества , упорядочим его по первой координате, построим на нём дерево отрезков с сохранением подмассива в каждой вершине
- Повторим построение дерева для каждого из них (координата последняя, поэтому в вершинах этих деревьев мы уже ничего строить не будем — подмассивы в каждой вершине можно не сохранять)
Псевдокод
build_subarray_tree(element[] array) { //построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине }
build_normal_tree(element[] array) { //построение обычного одномерного дерева отрезков на массиве array }
get_inside_array(vertex v) { //получение подмассива, сохраненного в вершине vertex }
build_compressed_tree(element[] array, int coordinate = 1) //рекурсивная процедура построения сжатого дерева отрезков { if (coordinate < p) { sort(array, coordinate); //сортировка массива по нужной координате segment_tree = build_subarray_tree(array); for each (vertex v in segment_tree) { build_compressed_tree(inside_array(v), coordinate + 1); } } if (coordinate == p) { sort(array, coordinate); build_normal_tree(array); } }
Анализ полученной структуры
Легко понять, что сжатое