Аксиоматизация матроида циклами — различия между версиями
Строка 21: | Строка 21: | ||
Рассмотрим множество <tex>C_1.</tex> Для него верно <tex>p_1 \in C_1 \subseteq I \cup p_1.</tex> В силу <tex>\mathfrak C</tex>-независимости <tex>J</tex> существует <tex>q_1 \in I \setminus J</tex> такой, что <tex>q_1 \in C_1.</tex> Рассмотрим теперь множество <tex>(I \setminus q_1) \cup p_1.</tex> | Рассмотрим множество <tex>C_1.</tex> Для него верно <tex>p_1 \in C_1 \subseteq I \cup p_1.</tex> В силу <tex>\mathfrak C</tex>-независимости <tex>J</tex> существует <tex>q_1 \in I \setminus J</tex> такой, что <tex>q_1 \in C_1.</tex> Рассмотрим теперь множество <tex>(I \setminus q_1) \cup p_1.</tex> | ||
− | Если <tex>(I \setminus q_1) \cup p_1 \notin \mathfrak I</tex>, то существует <tex>C' \in \mathfrak C</tex>, для которого существует такое <tex>C'' \in \mathfrak C,</tex> что <tex>C'' \subseteq (C_1 \cup C | + | Если <tex>(I \setminus q_1) \cup p_1 \notin \mathfrak I</tex>, то существует <tex>C' \in \mathfrak C</tex>, для которого существует такое <tex>C'' \in \mathfrak C,</tex> что <tex>C'' \subseteq (C_1 \cup C') \setminus p_1 \subseteq I.</tex> Пришли к противоречию с условием <tex>I \in \mathfrak I.</tex> |
Пусть <tex>(I \setminus q_1) \cup p_1 \in \mathfrak I</tex>. Заметим, что <tex>|((I \setminus q_1) \cup p_1) \cup J| < |I \cup J|</tex>. Поэтому в силу выбора пары <tex>I, J</tex> для пары <tex>(I \setminus q_1) \cup p_1, J</tex> существует элемент <tex>p_j</tex>, где <tex>j \ge 2</tex>, такой, что <tex>(I \setminus q_1) \cup p_1 \cup p_j \in \mathfrak I</tex>. Возьмем множество <tex>C_j \in \mathfrak C</tex>. Для него выполняется <tex>p_j \in C_j \subseteq I \cup p_j.</tex> Если <tex>q_1 \notin C_j</tex>, то <tex>C_j \subseteq (I \setminus q_1) \cup p_j \subseteq (I \setminus q1) \cup p_1 \cup p_j</tex>, что невозможно. Следовательно, <tex>q_1 \in C_j \cap C_1</tex> и <tex>C_j \ne C_1</tex>. Тогда по 3 пункуту теоремы, существует <tex>C \in \mathfrak C</tex>, для которого <tex>C \subseteq (C_j \cup C_1) \setminus q_1 \subseteq (C_j \setminus q_1) \cup (C_1 \setminus q_1) \subseteq ((I \setminus q_1) \cup p_j) \cup ((I \setminus q_1) \cup p_1)</tex>, которое равно <tex>(I \setminus q_10) \cup p_1 \cup p_j \in \mathfrak I</tex>, что невозможно. | Пусть <tex>(I \setminus q_1) \cup p_1 \in \mathfrak I</tex>. Заметим, что <tex>|((I \setminus q_1) \cup p_1) \cup J| < |I \cup J|</tex>. Поэтому в силу выбора пары <tex>I, J</tex> для пары <tex>(I \setminus q_1) \cup p_1, J</tex> существует элемент <tex>p_j</tex>, где <tex>j \ge 2</tex>, такой, что <tex>(I \setminus q_1) \cup p_1 \cup p_j \in \mathfrak I</tex>. Возьмем множество <tex>C_j \in \mathfrak C</tex>. Для него выполняется <tex>p_j \in C_j \subseteq I \cup p_j.</tex> Если <tex>q_1 \notin C_j</tex>, то <tex>C_j \subseteq (I \setminus q_1) \cup p_j \subseteq (I \setminus q1) \cup p_1 \cup p_j</tex>, что невозможно. Следовательно, <tex>q_1 \in C_j \cap C_1</tex> и <tex>C_j \ne C_1</tex>. Тогда по 3 пункуту теоремы, существует <tex>C \in \mathfrak C</tex>, для которого <tex>C \subseteq (C_j \cup C_1) \setminus q_1 \subseteq (C_j \setminus q_1) \cup (C_1 \setminus q_1) \subseteq ((I \setminus q_1) \cup p_j) \cup ((I \setminus q_1) \cup p_1)</tex>, которое равно <tex>(I \setminus q_10) \cup p_1 \cup p_j \in \mathfrak I</tex>, что невозможно. |
Версия 20:31, 28 июня 2011
Теорема (Аксиоматизация матроида циклами): |
Пусть — семейство подмножеств конечного непустого множетва такое, что:
|
Доказательство: |
Пусть семейство аксиомам из определения матроида. удовлетворяет условию теоремы. Множество назовем -независимым, если оно не содержит ни одного из множеств . Через обозначим семейство всех -независимых множеств, подмножеств . Проверим, что семейство удовлетворяетПоскольку , имеем , и первая аксиома, очевидно, выполняется.Очевидно, что если и то , и, следовательно, вторая аксиома выполнена.Проверим справедливость третьей аксиомы для семейства . Предположим, что существуют множества такие, что , для которых третья аксиома не выполнена. Среди всех таких пар выберем ту, у которой мощность минимальна. Положим . Если , то, очевидно, и аксиома выполняется. Поэтому достаточно рассмотреть .В силу нашего предположения для любого . Следовательно, существует такое, что и в силу -независимости множества имеем для любого . Ясно, что множества попарно различны.Рассмотрим множество Для него верно В силу -независимости существует такой, что Рассмотрим теперь множествоЕсли , то существует , для которого существует такое что Пришли к противоречию с условиемПусть . Заметим, что . Поэтому в силу выбора пары для пары существует элемент , где , такой, что . Возьмем множество . Для него выполняется Если , то , что невозможно. Следовательно, и . Тогда по 3 пункуту теоремы, существует , для которого , которое равно , что невозможно.Итак, семейство Докажем, что матроид удовлетворяет аксиомам матроида. Следовательно, существует матроид на множестве , для которого семейство является семейством независимых множеств. Из определения -независимости легко следует, что семейство совпадает с множеством циклов матроида определен однозначно. Пусть есть два матроида с носителем , семейством циклов и множествами баз соответственно. Не ограничивая общности можно считать, что существует . Тогда для всех , но — семейство циклов , следовательно для всех выполнено , что невозможно. |
Литература
Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2