Пороговая функция — различия между версиями
Warrior (обсуждение | вклад) |
Warrior (обсуждение | вклад) (→Пример) |
||
Строка 23: | Строка 23: | ||
:Если <tex>A_1=1,A_2=1,A_3=1</tex>, то <tex>13\ge5 \Rightarrow f=1</tex>. | :Если <tex>A_1=1,A_2=1,A_3=1</tex>, то <tex>13\ge5 \Rightarrow f=1</tex>. | ||
− | Таким образом, заданная функция принимает единичное значение на наборах 001, 011, 101, 110, 111. Её минимальная форма имеет вид | + | Таким образом, заданная функция принимает единичное значение на наборах 001, 011, 101, 110, 111. Её [[Сокращенная и минимальная ДНФ|минимальная форма]] имеет вид |
:<tex>f=A_1 A_2 + A_3</tex>. | :<tex>f=A_1 A_2 + A_3</tex>. | ||
Строка 35: | Строка 35: | ||
и разделить обе части неравенства на <tex>k</tex>. | и разделить обе части неравенства на <tex>k</tex>. | ||
}} | }} | ||
+ | |||
== Пример непороговой функции == | == Пример непороговой функции == | ||
Версия 01:35, 13 октября 2011
Определение: |
Булева функция | называется пороговой, если ее можно представить в виде , где — вес аргумента , а — порог функции ;
Обычно пороговую функцию записывают в следующим виде: .
Пример
Рассмотрим функцию трёх аргументов
. Согласно этой записи имеем- .
Все наборы значений аргументов
на которых функция принимает единичное (либо нулевое) значение, можно получить из соотношения вида .- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
Таким образом, заданная функция принимает единичное значение на наборах 001, 011, 101, 110, 111. Её минимальная форма имеет вид
- .
Утверждение: |
Для всякой пороговой функции справедливо
|
Чтобы убедиться в этом достаточно записать |
Пример непороговой функции
Примером непороговой функции может служить Сложение по модулю 2 (
).Предположим, что
— пороговая функция. При аргументах значение функции равно 0. Тогда, по определению пороговой функции неравенство не должно выполняться. Подставляя значение аргументов, получаем, что . При аргументах и значение функции равно 1. Тогда, по определению выполняется неравенство , подставляя в которое значения соответствующих аргументов, получаем . Отсюда следует, что и . При аргументах значение функции равно 0, следовательно неравенство выполняться не должно, то есть . Но неравенства и при положительных и одновременно выполнятся не могут. Получили противоречие и, значит, функция непороговая.