Теорема Хватала — различия между версиями
Строка 10: | Строка 10: | ||
|proof= | |proof= | ||
Так как <tex>\ d_1 \le d_2 \le ... \le d_k </tex>, то уже есть <tex>\ k </tex> вершин, степень которых не превосходит <tex>\ k </tex>. Если степени некоторых вершин, следующих за <tex>\ k </tex>, равны <tex>\ d_k </tex>, то число вершин, удовлетворяющих требованию, превышает <tex>\ k </tex>. <br> | Так как <tex>\ d_1 \le d_2 \le ... \le d_k </tex>, то уже есть <tex>\ k </tex> вершин, степень которых не превосходит <tex>\ k </tex>. Если степени некоторых вершин, следующих за <tex>\ k </tex>, равны <tex>\ d_k </tex>, то число вершин, удовлетворяющих требованию, превышает <tex>\ k </tex>. <br> | ||
− | Доказательство в обратную сторону: <br> | + | '''Доказательство в обратную сторону:''' <br> |
пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k + p </tex> <tex> (p \ge 0) </tex> вершин имеют степень не больше <tex>\ k </tex>. | пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k + p </tex> <tex> (p \ge 0) </tex> вершин имеют степень не больше <tex>\ k </tex>. | ||
Расположим вершины в неубывающем порядке их степеней. <tex>\ d_1 \le k, d_2 \le k, ... , d_k \le k, ..., d_{k+p} \le k </tex>. Значит <tex>\ d_k \le k </tex>. | Расположим вершины в неубывающем порядке их степеней. <tex>\ d_1 \le k, d_2 \le k, ... , d_k \le k, ..., d_{k+p} \le k </tex>. Значит <tex>\ d_k \le k </tex>. | ||
Строка 23: | Строка 23: | ||
|proof= | |proof= | ||
Так как <tex>\ d_{n-k} \le d_{n-k+1} \le .... \le d_n </tex> и <tex>\ d_{n-k} \ge n-k </tex>, то мы уже получаем <tex>\ d_{n-k}, d_{n-k+1}, ...., d_n = k + 1 </tex> вершин, удовлетворяющих нашему требованию. Если степени некоторых вершин, предшествующих <tex>\ n-k </tex>, равны <tex>\ d_{n-k} </tex>, то число вершин, подходящих нашему требованию, превышает <tex>\ k+1 </tex>. <br> | Так как <tex>\ d_{n-k} \le d_{n-k+1} \le .... \le d_n </tex> и <tex>\ d_{n-k} \ge n-k </tex>, то мы уже получаем <tex>\ d_{n-k}, d_{n-k+1}, ...., d_n = k + 1 </tex> вершин, удовлетворяющих нашему требованию. Если степени некоторых вершин, предшествующих <tex>\ n-k </tex>, равны <tex>\ d_{n-k} </tex>, то число вершин, подходящих нашему требованию, превышает <tex>\ k+1 </tex>. <br> | ||
− | Доказательство в обратную сторону: <br> | + | '''Доказательство в обратную сторону:''' <br> |
пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k+p </tex> <tex> (p > 0)</tex> вершин имеют степень не меньше <tex>\ n-k </tex>. Расположим вершины в неубывающем порядке их степеней. Получим: <tex>\ d_n \ge n-k, d_{n-1} \ge n-k, ..., d_{n-k} \ge n-k, ... , d_{n-k-p+1} \ge n-k </tex>. Если <tex> p = 1 </tex>, то <tex> n-k-p+1 = n-k </tex>. Отсюда видно, что <tex>\ d_{n-k} \ge n-k </tex>. | пусть у нас есть <tex>\ n </tex> вершин. Из них <tex>\ k+p </tex> <tex> (p > 0)</tex> вершин имеют степень не меньше <tex>\ n-k </tex>. Расположим вершины в неубывающем порядке их степеней. Получим: <tex>\ d_n \ge n-k, d_{n-1} \ge n-k, ..., d_{n-k} \ge n-k, ... , d_{n-k-p+1} \ge n-k </tex>. Если <tex> p = 1 </tex>, то <tex> n-k-p+1 = n-k </tex>. Отсюда видно, что <tex>\ d_{n-k} \ge n-k </tex>. | ||
}} | }} |
Версия 10:35, 15 октября 2011
Дан граф , состоящий из вершин, — степень -ой вершины.
Все расположены в порядке неубывания.
: верна импликация .
Лемма (I): |
Если , то число вершин, степень которых не превосходит , больше или равно .
Верно и обратное утверждение. |
Доказательство: |
Так как |
Лемма (II): |
Если , то число вершин, степень которых не меньше , больше или равно .
Верно и обратное утверждение. |
Доказательство: |
Так как |
Лемма (III): |
Пусть верно следующее:
|
Лемма (IV): |
Если условие верно для некоторой последовательности степеней, то оно верно и для мажорирующей её последовательности. |
Теорема (Хватал): |
Пусть связный граф, количество вершин которого не меньше 3. Упорядочим степени вершин по неубыванию.
Если для верна : , то — гамильтонов. — |
Доказательство: |
Приведем доказательство от противного.
Пусть теорема Хватала не верна, то есть существует граф с числом вершин рёбра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым).
Важно то, что добавление рёбер не нарушает условие .
Очевидно, что граф гамильтонов для .
Будем считать максимальным негамильтоновым остовным подграфом графа .
Выберем две несмежные вершины и графа с условием: — максимально.
Будем считать, что .
Добавив к новое ребро , получим гамильтонов граф .
Рассмотрим гамильтонов цикл графа : в нём обязательно присутствует ребро . |
Литература
- Асанов М,, Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы