Антисимметричное отношение — различия между версиями
Dima (обсуждение | вклад) |
Dima (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | [[Бинарное отношение]] <tex | + | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношений <tex>(aRb)</tex> и <tex>(bRa)</tex> следует равенство <tex dpi=180>a</tex> и <tex>b</tex>. |
}} | }} | ||
− | :<tex | + | :<tex>\forall a, b \in X,\ R(a,b) \wedge R(b,a) \; \Rightarrow \; a = b</tex> |
Или эквивалентное | Или эквивалентное | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Бинарное отношение <tex | + | Бинарное отношение <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''', если для любых неравных элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношения <tex>(aRb)</tex> следует невыполнение отношения <tex>(bRa)</tex>. |
}} | }} | ||
− | :<tex | + | :<tex>\forall a, b \in X,\ R(a,b) \wedge a \ne b \Rightarrow \lnot R(b,a)</tex> |
− | Определение антисимметричного отношения как <tex | + | Определение антисимметричного отношения как <tex> (aRb) \Rightarrow \neg(bRa) </tex> является избыточным (и потому неверным), поскольку из такого определения также следует [[Рефлексивное_отношение| антирефлексивность]] R. |
Антисимметричность отношения не исключает симметричности. Существуют бинарные отношения: | Антисимметричность отношения не исключает симметричности. Существуют бинарные отношения: | ||
Строка 26: | Строка 26: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | [[Бинарное отношение]] <tex | + | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''асимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> одновременное выполнение отношений <tex>a R b</tex> и <tex>b R a</tex> невозможно. |
}} | }} | ||
Заметим, что антисимметричное отношение {{---}} частный случай асимметричного. Это наглядно показывают следующие рассуждения: | Заметим, что антисимметричное отношение {{---}} частный случай асимметричного. Это наглядно показывают следующие рассуждения: | ||
Строка 37: | Строка 37: | ||
Примерами антисимметричных отношений являются, по определению, все отношения [http://ru.wikipedia.org/wiki/Вполне_упорядоченное_множество полного] и [http://ru.wikipedia.org/wiki/Частично_упорядоченное_множество частичного порядка](<tex> <, >, \le, \ge </tex> и другие). | Примерами антисимметричных отношений являются, по определению, все отношения [http://ru.wikipedia.org/wiki/Вполне_упорядоченное_множество полного] и [http://ru.wikipedia.org/wiki/Частично_упорядоченное_множество частичного порядка](<tex> <, >, \le, \ge </tex> и другие). | ||
− | Антисимметрично отношение делимости на натуральных числах (если <tex | + | Антисимметрично отношение делимости на натуральных числах (если <tex>a \mid b</tex> и <tex>b \mid a</tex>, то <tex>a=b</tex>) |
− | Отношение включения на <tex | + | Отношение включения на <tex>2^U</tex>, где <tex>U</tex> - универсум, антисимметрично (<tex> A \subseteq B \wedge B \subseteq A \Rightarrow A = B</tex>). |
== Свойства антисимметричного отношения == | == Свойства антисимметричного отношения == | ||
− | Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент <tex | + | Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент <tex>a_{ij}</tex> матрицы равен единице, то элемент <tex>a_{ji}</tex> равен нулю. Отсюда следует, что матрица <tex>M+M^T</tex>, где <tex>M</tex> - матрица смежности некоторого антисимметричного отношения, может содержать 2 только на главной диагонали. |
Ориентированный граф, изображающий антисимметричное отношение не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли. | Ориентированный граф, изображающий антисимметричное отношение не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли. | ||
− | Если <tex | + | Если <tex>a</tex> и <tex>b</tex> - некоторые антисимметричные отношения, то антисимметричными также являются отношения: |
− | #<tex | + | #<tex>a\cap b</tex> |
− | #<tex | + | #<tex>a^{-1}</tex> |
− | #<tex | + | #<tex>b^{-1}</tex> |
==См. также== | ==См. также== |
Версия 16:57, 18 октября 2011
Антисимметрия — одно из важнейших свойств бинарных отношений на множестве.
Содержание
Основные определения
Определение: |
Бинарное отношение на множестве называется антисимметричным, если для любых элементов и множества из выполнения отношений и следует равенство и . |
Или эквивалентное
Определение: |
Бинарное отношение | на множестве называется антисимметричным, если для любых неравных элементов и множества из выполнения отношения следует невыполнение отношения .
Определение антисимметричного отношения как антирефлексивность R.
является избыточным (и потому неверным), поскольку из такого определения также следуетАнтисимметричность отношения не исключает симметричности. Существуют бинарные отношения:
- одновременно симметричные и антисимметричные (отношение равенства);
- ни симметричные, ни антисимметричные;
- симметричные, но не антисимметричные;
- антисимметричные, но не симметричные ("меньше или равно", "больше или равно");
Следует различать антисимметричное и асимметричное бинарные отношения.
Определение: |
Бинарное отношение на множестве называется асимметричным, если для любых элементов и множества одновременное выполнение отношений и невозможно. |
Заметим, что антисимметричное отношение — частный случай асимметричного. Это наглядно показывают следующие рассуждения:
- Главная диагональ матрицы смежности асимметричного отношения заполнена нулями; в остальном свойства матрицы повторяют свойства матрицы смежности антисимметричного отношения.
- Граф асимметричного отношения не содержит петель; в остальном свойства графа повторяют свойства графа антисимметричного отношения.
(см. Свойства антисимметричного отношения)
Примеры антисимметричных отношений
Примерами антисимметричных отношений являются, по определению, все отношения полного и частичного порядка( и другие).
Антисимметрично отношение делимости на натуральных числах (если
и , то )Отношение включения на
, где - универсум, антисимметрично ( ).Свойства антисимметричного отношения
Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент
матрицы равен единице, то элемент равен нулю. Отсюда следует, что матрица , где - матрица смежности некоторого антисимметричного отношения, может содержать 2 только на главной диагонали.Ориентированный граф, изображающий антисимметричное отношение не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли.
Если
и - некоторые антисимметричные отношения, то антисимметричными также являются отношения: