Расстояние Хэмминга — различия между версиями
Whiplash (обсуждение | вклад) |
Whiplash (обсуждение | вклад) |
||
Строка 23: | Строка 23: | ||
== Доказательство неравенства треугольника == | == Доказательство неравенства треугольника == | ||
{{Утверждение | {{Утверждение | ||
− | |statement=Пусть слова '''x''' и '''y''' отличаются в некоторой позиции '''t'''. | + | |statement=<tex>~d(x,z) \le d(x,y) + d(y,z)</tex> |
− | + | |proof=Пусть слова '''x''' и '''y''' отличаются в некоторой позиции '''t'''. Тогда какое бы слово '''z''' мы ни взяли, оно в этой позиции будет отличаться по крайней мере от одного из слов '''x''' и '''y'''. Следовательно, суммируя в правой части <tex>~d(x, z)</tex> и <tex>~d(z, y)</tex>, мы обязательно учтем все позиции, в которых различались слова '''x''' и '''y'''.}} | |
== См. также == | == См. также == |
Версия 05:51, 25 октября 2011
Определение: |
Расстояние Хэмминга (Hamming distance) — число позиций, в которых соответствующие цифры двух двоичных слов одинаковой длины различны. |
В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.
Пример
Свойства
Расстояние Хэмминга обладает свойствами метрики, удовлетворяя следующим условиям:
- (Объект x удален от объекта y так же, как объект y удален от объекта x)
Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.
Математики договорились любую функцию, обладающую указанными тремя свойствами, называть расстоянием.
Доказательство неравенства треугольника
Утверждение: |
Пусть слова x и y отличаются в некоторой позиции t. Тогда какое бы слово z мы ни взяли, оно в этой позиции будет отличаться по крайней мере от одного из слов x и y. Следовательно, суммируя в правой части | и , мы обязательно учтем все позиции, в которых различались слова x и y.