Коды Грея для перестановок — различия между версиями
Строка 16: | Строка 16: | ||
$\{2, 1, 3\}$ | $\{2, 1, 3\}$ | ||
− | == | + | == Построение кода Грея для перестановок == |
Чтобы построить код Грея для перестановки длиной $n$, будем использовать код Грея для перестановки длиной $n - 1$. | Чтобы построить код Грея для перестановки длиной $n$, будем использовать код Грея для перестановки длиной $n - 1$. | ||
Строка 93: | Строка 93: | ||
else | else | ||
− | == Сведение задачи | + | == Сведение задачи построения кода Грея для перестановок к графам == |
Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам $f$ и $g$, соединены ребром, если $g$ образуется из $f$ однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе. | Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам $f$ и $g$, соединены ребром, если $g$ образуется из $f$ однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе. |
Версия 09:15, 23 ноября 2011
<wikitex>
Определение: |
Коды Грея для перестановок — упорядочение перестановок, при котором соседние перестановки отличаются только элементарной транспозицией. Элементарная транспозиция — транспозиция двух соседних элементов. Далее будем называть элементарную транспозицию просто транспозицией. |
Содержание
Примеры кодов Грея для перестановок
$n=2:$ $n=3:$ $\{1, 2\}$ $\{1, 2, 3\}$ $\{2, 1\}$ $\{1, 3, 2\}$ $\{3, 1, 2\}$ $\{3, 2, 1\}$ $\{2, 3, 1\}$ $\{2, 1, 3\}$
Построение кода Грея для перестановок
Чтобы построить код Грея для перестановки длиной $n$, будем использовать код Грея для перестановки длиной $n - 1$. Для $n = 1$ код Грея выглядит так:
$\{ 1 \}$ — $n!$ различных перестановок, отличных друг от друга в одной транспозиции (очевидно).
Будем строить код Грея для перестановок длины $n = k$. Предположим, что нам известен код Грея для перестановок длиной $n = k - 1$. Возьмем первую перестановку из известного нам кода. Пусть она выглядит так:
$\{a_{1}, a_{2}, a_{3}, ..., a_{k-1}\}$ ,где $a_{i}$ при $i = 1, 2, 3, ..., k$ — элементы перестановки.
Элемент $a_{k}$ запишем в начало этой перестановки:
$\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$
Будем "двигать" этот элемент $a_{k}$ влево, меняя его с соседним:
$\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (1)
$\{a_{1}, a_{k}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (2)
$\{a_{1}, a_{2}, a_{k}, a_{3}, ..., a_{k - 1}\}$
$\{a_{1}, a_{2}, a_{3}, a_{k}, ..., a_{k - 1}\}$
$..........................$
$\{a_{1}, a_{2}, a_{3}, ..., a_{k}, a_{k - 1}\}$
$\{a_{1}, a_{2}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (3)
Получим $k$ различных перестановок, отличающихся в одной транспозиции. Возьмем следующую строку из кода Грея для перестановок длиной $n = k - 1$, которая будет выглядеть так (т.к. мы получили, что элемент стоящий на первом месте в перестановке будет "двигаться" вправо см. (1), (2), то и во второй перестановке первый элемент "поменяется" со вторым):
$\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$
Элемент $a_{k}$ записываем в конец и начинаем "двигать" влево, меняя его с правостоящим:
$\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (4)
$\{a_{2}, a_{1}, a_{3}, ..., a_{k}, a_{k - 1}\}$
$..........................$
$\{a_{2}, a_{1}, a_{3}, a_{k}, ..., a_{k - 1}\}$
$\{a_{2}, a_{1}, a_{k}, a_{3}, ..., a_{k - 1}\}$
$\{a_{2}, a_{k}, a_{1}, a_{3}, ..., a_{k - 1}\}$
$\{a_{k}, a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$
Опять получили $k$ различных перестановок, отличающихся в одной транспозиции. Далее берем третью строку из кода Грея для перестановок длиной $n = k - 1$, записываем в ее начало элемент $a_{k}$ и двигаем его вправо, как для первой перестановки и т.д.
Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок — имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен.
Псевдокод получения следующего кода Грея для перестановок по предыдущему
Пусть нам известен код Грея для перестановок длиной $n$, записанный в массив pred_perest, состоящий из строк, в которые записаны перестановки, и новый элемент new_elem. При этом pred_perest[i](1) будет обозначать, что в i-той перестановке выделен первый элемент. Тогда:
// Алгоритм в процессе доработки!!!
t := false; {булевая переменная, отвечающая за прямой или обратный порядок перебора} for i := 1 to n! do begin if t = false then begin pred_perest[i](n+1) := new_elem; for j := n downto 1 do begin smena write(pred_perest[i]); if pred_perest[i](n+1) <> pred_perest[i+1](n+1) then l := j; end; end else
Сведение задачи построения кода Грея для перестановок к графам
Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам $f$ и $g$, соединены ребром, если $g$ образуется из $f$ однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе.
См. также
Литература
Романовский, И.В. Дискретный Анализ - Санкт-Петербург 2003 стр. 39-41