Коды Грея — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Отрицания теперь в виде чёрточек.)
м
Строка 13: Строка 13:
  
 
Существует несколько видов Кода Грея, самый простой из них {{---}} так называемый зеркальный двоичный Код Грея. Строится он так:  
 
Существует несколько видов Кода Грея, самый простой из них {{---}} так называемый зеркальный двоичный Код Грея. Строится он так:  
 +
 
Для получения кода длины <tex>n</tex> производится <tex>n</tex> шагов. На первом шаге код имеет длину 1 и состоит из двух векторов (0) и (1). На каждом следующем шаге в конец списка заносятся все уже имеющиеся вектора в обратном порядке, и затем к первой половине получившихся векторов дописывается "0", а ко второй  "1". С каждым шагом длина векторов увеличивается на 1, а их количество {{---}} вдвое.  
 
Для получения кода длины <tex>n</tex> производится <tex>n</tex> шагов. На первом шаге код имеет длину 1 и состоит из двух векторов (0) и (1). На каждом следующем шаге в конец списка заносятся все уже имеющиеся вектора в обратном порядке, и затем к первой половине получившихся векторов дописывается "0", а ко второй  "1". С каждым шагом длина векторов увеличивается на 1, а их количество {{---}} вдвое.  
 
Таким образом, количество векторов длины <tex>n</tex> равно <tex>2^n.</tex>
 
Таким образом, количество векторов длины <tex>n</tex> равно <tex>2^n.</tex>
Строка 19: Строка 20:
 
{| border="0"  
 
{| border="0"  
 
|align="left" colspan="4"|
 
|align="left" colspan="4"|
GrayCode {{---}} двухмерный массив, в котором GrayCode[a, b] {{---}} <tex>b</tex>-ый бит в <tex>a</tex>-ом коде Грея.
+
GrayCode {{---}} двумерный массив, в котором GrayCode[a, b] {{---}} <tex>b</tex>-ый бит в <tex>a</tex>-ом коде Грея.
 
<font size=3>
 
<font size=3>
 
  buildCode(n):
 
  buildCode(n):

Версия 17:30, 26 ноября 2011

Определение

Определение:
Код Грея (Gray code) — такое упорядочение [math]k[/math]-ичных (обычно двоичных) векторов, что соседние вектора отличаются только в одном разряде.


Код назван в честь Фрэнка Грея, который в 1947-ом году получил патент на "отражённый двоичный код". Изначально он предназначался для избавления от паразитных состояний в электромеханических переключателях, однако сейчас область его применения гораздо шире.

Алгоритм построения

Иллюстрация получения зеркального двоичного кода Грея.

Существует несколько видов Кода Грея, самый простой из них — так называемый зеркальный двоичный Код Грея. Строится он так:

Для получения кода длины [math]n[/math] производится [math]n[/math] шагов. На первом шаге код имеет длину 1 и состоит из двух векторов (0) и (1). На каждом следующем шаге в конец списка заносятся все уже имеющиеся вектора в обратном порядке, и затем к первой половине получившихся векторов дописывается "0", а ко второй "1". С каждым шагом длина векторов увеличивается на 1, а их количество — вдвое. Таким образом, количество векторов длины [math]n[/math] равно [math]2^n.[/math]

Псевдокод

GrayCode — двумерный массив, в котором GrayCode[a, b] — [math]b[/math]-ый бит в [math]a[/math]-ом коде Грея.

buildCode(n):
  GrayCode[1, n] = 0
  GrayCode[2, n] = 1 {построение кода длины 1}
  p = 2 {p — количество уже имеющихся кодов}
  for (i = 2, i <= n, i++):
    p = p * 2
    for (k = i + 1, k <= 2 * i, k++):
      GrayCode[k] = GrayCode[p + 1 - k] {отражение имеющихся кодов}
      GrayCode[k - i, n + 1 - i] = 0
      GrayCode[k, n + 1 - i] = 1 {добавление 0 и 1 в начало}

Доказательство правильности работы алгоритма

По индукции:

  • на первом шаге код отвечает условиям
  • предположим, что код, получившийся на [math]i[/math]-ом шаге, является Кодом Грея
  • тогда на шаге [math]i + 1[/math]: первая половина кода будет корректна, так как она совпадает с кодом с шага [math]i[/math] за исключением добавленного последнего бита 0. Вторая половина тоже соответствует условиям, так как она является зеркальным отражением первой половины, только добавлен везде бит 1. На стыке: первые [math]i[/math] бит совпадают в силу зеркальности, последние различны по построению.

Таким образом, этот код — Код Грея. Индукционное предположение доказано, алгоритм работает верно.

Этот алгоритм можно обобщить и для [math]k[/math]-ичных векторов. Также известен алгоритм преобразования двоичного кода в Код Грея.

Существует ещё несколько видов Кода Грея — сбалансированный Код Грея, код Беккета-Грея, одноколейный Код Грея.

Явная формула для получения зеркального двоичного кода Грея

Теорема:
В двоичном зеркальном коде Грея [math]i[/math]-ый код может быть получен по формуле [math]G_i = i \oplus (\lfloor i / 2 \rfloor)[/math] при нумерации кодов с нуля.
Доказательство:
[math]\triangleright[/math]

Для кода длиной 1 бит утверждение проверяется непосредственно.

Пусть существует зеркальный двоичный код Грея [math]M[/math] длины [math]n[/math], для которого выполнено, что для любого [math]i \enskip M_i = i \oplus (\lfloor i / 2 \rfloor)[/math]

Обозначим за [math]L[/math] код длины [math]n + 1[/math], полученный из [math]M[/math] описанным выше алгоритмом. Тогда:

Для любого [math]x \lt 2^n \enskip L_x = 0M_x = 0(x_{n-1}x_{n-2}...x_{0} \oplus 0x_{n-1}x_{n-2}...x_{1}) =[/math] [math] 0x_{n-1}x_{n-2}...x_{0} \oplus 00x_{n-1}x_{n-2}...x_{1} = x \oplus (\lfloor x / 2 \rfloor)[/math]

Для любого [math]x \geq 2^n \enskip L_x = 1M_y[/math], где [math]y = 2^{n+1} - 1 - x = \neg x[/math], то есть

[math]L_x = 1(\overline {x_{n-1} x_{n-2}... x_{0}} \oplus 0 \overline {x_{n-1} x_{n-2}... x_{1}}) =[/math] [math] 1(\overline {x_{n-1}}x_{n-2}...x_{0} \oplus 0x_{n-1}x_{n-2}...x_{1}) =[/math]

[math]= 1(x_{n-1}x_{n-2}...x_{0} \oplus 1x_{n-1}x_{n-2}...x_{1}) = 1x_{n-1}x_{n-2}...x_{0}[/math] [math] \oplus 01x_{n-1}x_{n-2}...x_{1} = x_{n}x_{n-1}x_{n-2}...x_{0} \oplus 0x_{n}x_{n-1}x_{n-2}...x_{1} =[/math] [math] x \oplus (\lfloor x / 2 \rfloor)[/math]

Таким образом, шаг индукции доказан, следовательно, теорема верна.
[math]\triangleleft[/math]

Применение

Код Грея применяется в:

  • датчиках-энкодерах (устройства, преобразующие угол поворота вала в электрический сигнал)
  • как способ решения задачи о Ханойских башнях (дано три стержня, на первом из них нанизано 8 колец разного размера в виде пирамиды; цель — перенести пирамиду на другой стержень, сохранив упорядоченность);
  • в генетических алгоритмах
  • в Картах Карно (при передаче в карту переменные сортируются в Код Грея)
  • в кодах, исправляющих ошибки
  • для связи систем с различной частотой работы.


Источники