Задача коммивояжера, ДП по подмножествам — различия между версиями
Krotser (обсуждение | вклад) (→Реализация) |
Krotser (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Задача о коммивояжере''' (англ. '''Travelling - salesman problem, TSP''') - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из <tex> N </tex> точек на плоскости. | + | '''Задача о коммивояжере''' (англ. '''Travelling - salesman problem, TSP''') - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из <tex> N </tex> точек на плоскости. Коммивояжер должен посетить <tex> N </tex> городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей? |
− | |||
− | |||
− | Коммивояжер должен посетить <tex> N </tex> городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей? | ||
== Варианты решения == | == Варианты решения == | ||
Строка 8: | Строка 5: | ||
Так вот задача о коммивояжере относится к классу NP-полных задач. Рассмотрим два варианта решения. | Так вот задача о коммивояжере относится к классу NP-полных задач. Рассмотрим два варианта решения. | ||
+ | |||
==== Перебор перестановок ==== | ==== Перебор перестановок ==== | ||
− | + | Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все <tex> N! </tex> всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших <tex>N</tex>. Сложность алгоритма <tex>O({N!}\times{N})</tex>. | |
− | Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все <tex> N! </tex> всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших <tex>N</tex>. Сложность алгоритма <tex>O(N!)</tex>. | ||
==== Динамическое программирование по подмножествам (по маскам) ==== | ==== Динамическое программирование по подмножествам (по маскам) ==== | ||
Строка 16: | Строка 13: | ||
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе. | Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе. | ||
− | Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе <tex> | + | Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе <tex> G?=?(V,?E)</tex> <tex> N </tex> |
− | вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> | + | вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна. |
− | Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости - путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам(кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex> | + | Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости - путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам(кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex>s = 0 </tex>. |
Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>. | Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>. | ||
Строка 32: | Строка 29: | ||
\begin{cases} | \begin{cases} | ||
0, &\text{if }i = 0\text{ and }mask = 0 \\ | 0, &\text{if }i = 0\text{ and }mask = 0 \\ | ||
− | min_{j: mask_j=1, (i, j) \in E} \begin{Bmatrix} | + | min_{j: mask_j=1, (i, j) \in E} \begin{Bmatrix} w(i, j) + d[j][mask - 2^j] \end{Bmatrix}, & \text{if } i\neq 0 \text{ or } mask \neq 0\\ |
\infty, & \text{if } i \neq 0 \text{ and } mask \neq 0 \text{ and set of possible transitions is empty} | \infty, & \text{if } i \neq 0 \text{ and } mask \neq 0 \text{ and set of possible transitions is empty} | ||
\end{cases} | \end{cases} | ||
Строка 40: | Строка 37: | ||
− | Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. | + | Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени. |
− | |||
− | |||
− | + | Для того, чтобы восстановить сам пут, воспользуемся соотношением <tex> d[i][mask] = w(i, j) + d[j][mask - 2^j] </tex>, которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния <tex> i = 0 </tex>, <tex> mask = 2^n - 1</tex>, найдем вершину <tex>j</tex>, для которой выполняется указанное соотношение, добавим <tex>j</tex> в ответ, пересчитаем текущее состояние как <tex>i = j</tex>, <tex> mask = mask - 2^j </tex>. Процесс заканчивается в состоянии <tex>i = 0</tex>, <tex> mask = 0 </tex>. | |
== Реализация == | == Реализация == | ||
//Все переменные используются из описания алгоритма, inf = бесконечность | //Все переменные используются из описания алгоритма, inf = бесконечность | ||
− | |||
d[0][0] = 0; | d[0][0] = 0; | ||
for i = 0 to n - 1 | for i = 0 to n - 1 | ||
− | for mask = 0 to mask = 2 | + | for mask = 0 to mask = 2 ** n - 1 |
for j = 0 to n - 1 | for j = 0 to n - 1 | ||
if j-ий бит mask == 1 | if j-ий бит mask == 1 | ||
− | if | + | if w(i, j) существует |
− | d[i][mask] = min(d[i][mask], d[j][mask - 2 | + | d[i][mask] = min(d[i][mask], d[j][mask - 2 ** n] + w(i, j); |
else | else | ||
d[i][mask] = inf; | d[i][mask] = inf; | ||
− | + | print d[0][2 ** n - 1]; | |
== Ссылки == | == Ссылки == |
Версия 17:41, 1 декабря 2011
Задача о коммивояжере (англ. Travelling - salesman problem, TSP) - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из
точек на плоскости. Коммивояжер должен посетить городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?Содержание
Варианты решения
В теории алгоритмов NP-полная (NPC, NP-complete) задача — задача из класса NP, к которой можно свести любую другую задачу из класса NP за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «самых сложных» задач в классе NP; и если для какой-то из них будет найден «быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро». Cтатус NP-полных задач пока что неизвестен. Для их решения до настоящего времени не разработано алгоритмов с полиномиальным временем работы, но и не доказано, что для какой-то из них алгоритмов не существует. Этот так называемый вопрос P
NP с момента своей постановки в 1971 году стал одним из самых трудных в теории вычислительных систем.Так вот задача о коммивояжере относится к классу NP-полных задач. Рассмотрим два варианта решения.
Перебор перестановок
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все
всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших . Сложность алгоритма .Динамическое программирование по подмножествам (по маскам)
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе
вершин, пронумерованных от до и каждое ребро имеет некоторый вес . Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.Зафиксируем начальную вершину
и будем искать гамильтонов цикл наименьшей стоимости - путь от до , проходящий по всем вершинам(кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор не имеет значения. Поэтому будем считать .Подмножества вершин будем кодировать битовыми векторами, обозначим
значение -ого бита в векторе .Обозначим
как наименьшую стоимость пути из вершины в вершину , проходящую (не считая вершины ) единожды по всем тем и только тем вершинам , для которых (т.е. - подмножество вершин исходного графа, которые осталось посетить).Конечное состояние - когда находимся в 0-й вершине, все вершины посещены (т.е.
, ). Для остальных состояний перебираем все возможные переходы из -й вершины в одну из непосещенных ранее и выбираем способ, дающий минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как ).То есть,
считается по следующему правилу:
где,
и, или, множество возможных переходов пусто.
Стоимостью минимального гамильтонова цикла в исходном графе будет значение - стоимость пути из -й вершины в -ю, при необходимости посетить все вершины. Данное решение требует памяти и времени.
Для того, чтобы восстановить сам пут, воспользуемся соотношением
, которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния , , найдем вершину , для которой выполняется указанное соотношение, добавим в ответ, пересчитаем текущее состояние как , . Процесс заканчивается в состоянии , .Реализация
//Все переменные используются из описания алгоритма, inf = бесконечность d[0][0] = 0; for i = 0 to n - 1 for mask = 0 to mask = 2 ** n - 1 for j = 0 to n - 1 if j-ий бит mask == 1 if w(i, j) существует d[i][mask] = min(d[i][mask], d[j][mask - 2 ** n] + w(i, j); else d[i][mask] = inf; print d[0][2 ** n - 1];
Ссылки
Литература
- Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4