Задача коммивояжера, ДП по подмножествам — различия между версиями
Krotser (обсуждение | вклад) |
Krotser (обсуждение | вклад) |
||
Строка 13: | Строка 13: | ||
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе. | Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе. | ||
− | Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе <tex> G | + | Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе <tex> G=(V,E)</tex> <tex> N </tex> |
вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна. | вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна. | ||
− | Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости - путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам(кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex>s = 0 </tex>. | + | Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости - путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex>s = 0 </tex>. |
Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>. | Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>. | ||
− | Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>mask</tex> - | + | Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>d[i][mask]</tex> уже найденный оптимальный путь от <tex>i</tex>-ой вершины до <tex>0</tex>-ой, проходящий через те вершины, где <tex>mask_j=1</tex>. Если <tex>mask_j=0</tex>,то эти вершины еще не посещены). |
− | + | Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен <tex>0</tex> (т.е. <tex>i = 0</tex>, <tex>mask = 0</tex>). Для остальных состояний перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>). | |
То есть, <tex>d[i][mask]</tex> считается по следующему правилу: | То есть, <tex>d[i][mask]</tex> считается по следующему правилу: | ||
Строка 39: | Строка 39: | ||
Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени. | Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени. | ||
− | Для того, чтобы восстановить сам | + | Для того, чтобы восстановить сам путь, воспользуемся соотношением <tex> d[i][mask] = w(i, j) + d[j][mask - 2^j] </tex>, которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния <tex> i = 0 </tex>, <tex> mask = 2^n - 1</tex>, найдем вершину <tex>j</tex>, для которой выполняется указанное соотношение, добавим <tex>j</tex> в ответ, пересчитаем текущее состояние как <tex>i = j</tex>, <tex> mask = mask - 2^j </tex>. Процесс заканчивается в состоянии <tex>i = 0</tex>, <tex> mask = 0 </tex>. |
== Реализация == | == Реализация == |
Версия 18:27, 1 декабря 2011
Задача о коммивояжере (англ. Travelling - salesman problem, TSP) - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из
точек на плоскости. Коммивояжер должен посетить городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?Содержание
Варианты решения
В теории алгоритмов NP-полная (NPC, NP-complete) задача — задача из класса NP, к которой можно свести любую другую задачу из класса NP за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «самых сложных» задач в классе NP; и если для какой-то из них будет найден «быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро». Cтатус NP-полных задач пока что неизвестен. Для их решения до настоящего времени не разработано алгоритмов с полиномиальным временем работы, но и не доказано, что для какой-то из них алгоритмов не существует. Этот так называемый вопрос P
NP с момента своей постановки в 1971 году стал одним из самых трудных в теории вычислительных систем.Так вот задача о коммивояжере относится к классу NP-полных задач. Рассмотрим два варианта решения.
Перебор перестановок
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все
всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших . Сложность алгоритма .Динамическое программирование по подмножествам (по маскам)
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе
вершин, пронумерованных от до и каждое ребро имеет некоторый вес . Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.Зафиксируем начальную вершину
и будем искать гамильтонов цикл наименьшей стоимости - путь от до , проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор не имеет значения. Поэтому будем считать .Подмножества вершин будем кодировать битовыми векторами, обозначим
значение -ого бита в векторе .Обозначим
как наименьшую стоимость пути из вершины в вершину , проходящую (не считая вершины ) единожды по всем тем и только тем вершинам , для которых (т.е. уже найденный оптимальный путь от -ой вершины до -ой, проходящий через те вершины, где . Если ,то эти вершины еще не посещены).Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен
(т.е. , ). Для остальных состояний перебираем все возможные переходы в -ую вершину из любой посещенной ранее и выбираем минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как ).То есть,
считается по следующему правилу:
где,
и, или, множество возможных переходов пусто.
Стоимостью минимального гамильтонова цикла в исходном графе будет значение - стоимость пути из -й вершины в -ю, при необходимости посетить все вершины. Данное решение требует памяти и времени.
Для того, чтобы восстановить сам путь, воспользуемся соотношением
, которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния , , найдем вершину , для которой выполняется указанное соотношение, добавим в ответ, пересчитаем текущее состояние как , . Процесс заканчивается в состоянии , .Реализация
//Все переменные используются из описания алгоритма, inf = бесконечность d[0][0] = 0; for i = 0 to n - 1 for mask = 0 to mask = 2 ** n - 1 for j = 0 to n - 1 if j-ий бит mask == 1 if w(i, j) существует d[i][mask] = min(d[i][mask], d[j][mask - 2 ** n] + w(i, j); else d[i][mask] = inf; print d[0][2 ** n - 1];
Ссылки
Литература
- Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4