Коды Грея для перестановок — различия между версиями
Lirik (обсуждение | вклад) |
Lirik (обсуждение | вклад) |
||
Строка 81: | Строка 81: | ||
Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок {{---}} имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен. | Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок {{---}} имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
== Пример применения алгоритма == | == Пример применения алгоритма == | ||
Строка 139: | Строка 134: | ||
end; | end; | ||
end; | end; | ||
+ | |||
+ | == Сведение задачи построения кода Грея для перестановок к графам == | ||
+ | |||
+ | Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам $f$ и $g$, соединены ребром, если $g$ образуется из $f$ однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе. | ||
== См. также == | == См. также == |
Версия 02:17, 10 декабря 2011
<wikitex>
Содержание
Определения
Определение: |
Коды Грея для перестановок — упорядочение перестановок, при котором соседние перестановки отличаются только элементарной транспозицией. Элементарная транспозиция — транспозиция двух соседних элементов. Далее будем называть элементарную транспозицию просто транспозицией. |
Примеры кодов Грея для перестановок
n=2 | n=3 |
{1, 2} | {1, 2, 3} |
{2, 1} | {1, 3, 2} |
{3, 1, 2} | |
{3, 2, 1} | |
{2, 3, 1} | |
{2, 1, 3} |
Построение кода Грея для перестановок
Чтобы построить код Грея для перестановки длиной $n$, будем использовать код Грея для перестановки длиной $n - 1$. Для $n = 1$ код Грея выглядит так:
$\{ 1 \}$
Будем строить код Грея для перестановок длины $n = k$. Предположим, что нам известен код Грея для перестановок длиной $n = k - 1$. Возьмем первую перестановку из известного нам кода. Пусть она выглядит так:
$\{a_{1}, a_{2}, a_{3}, ..., a_{k-1}\}$ ,где $a_{i}$ при $i = 1, 2, 3, ..., k$ — элементы перестановки.
Элемент $a_{k}$ запишем в начало этой перестановки:
$\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$
Будем "двигать" этот элемент $a_{k}$ вправо, меняя его с соседним:
$\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (1)
$\{a_{1}, a_{k}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (2)
$\{a_{1}, a_{2}, a_{k}, a_{3}, ..., a_{k - 1}\}$
$\{a_{1}, a_{2}, a_{3}, a_{k}, ..., a_{k - 1}\}$
$..........................$
$\{a_{1}, a_{2}, a_{3}, ..., a_{k}, a_{k - 1}\}$
$\{a_{1}, a_{2}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (3)
Получим $k$ различных перестановок, отличающихся в одной транспозиции. Возьмем следующую строку из кода Грея для перестановок длиной $n = k - 1$, которая будет выглядеть так (т.к. мы получили, что элемент стоящий на первом месте в перестановке будет "двигаться" вправо см. (1), (2), то и во второй перестановке первый элемент "поменяется" со вторым):
$\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$
Элемент $a_{k}$ записываем в конец и начинаем "двигать" влево, меняя его с правостоящим:
$\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (4)
$\{a_{2}, a_{1}, a_{3}, ..., a_{k}, a_{k - 1}\}$
$..........................$
$\{a_{2}, a_{1}, a_{3}, a_{k}, ..., a_{k - 1}\}$
$\{a_{2}, a_{1}, a_{k}, a_{3}, ..., a_{k - 1}\}$
$\{a_{2}, a_{k}, a_{1}, a_{3}, ..., a_{k - 1}\}$
$\{a_{k}, a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$
Опять получили $k$ различных перестановок, отличающихся в одной транспозиции. Далее берем третью строку из кода Грея для перестановок длиной $n = k - 1$, записываем в ее начало элемент $a_{k}$ и двигаем его вправо, как для первой перестановки и т.д.
Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок — имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен.
Пример применения алгоритма
Рассмотрим код Грея для длины $n = 2$:
{2, 1}
{1, 2}
Тогда следуя алгоритму полученный код будет выглядеть так(жирным выделены элементы, которые поменялись):
{3, 2, 1} берем первую перестановку и добавляем в начало тройку
{2, 3, 1} двигаем до последней позиции
{2, 1, 3}
{1, 2, 3} берем следующую перестановку и записываем тройку в конец
{1, 3, 2} двигаем в начало
{3, 1, 2}
Код Грея получен.
Псевдокод получения следующего кода Грея
Пусть нам известен код Грея для длины $n-1$, записанный в массив pred_perest[i](j), где $i$ - номер перестановки, $j$ - номер элемента этой перестановки (номерация начинается с единицы).
t := false; {булевская переменная отвечающая за порядок перебора true: от начала к концу false: от конца к началу} for i := 1 to (n - 1)! do {перебираем все прошлые перестановки} if t = true then begin vstavka(pred_perest[i], t); {вставляем в конец, если t = true} writeln(pred_perest[i]); for j := 1 to n - 1 do {для каждой перестановки делаем n - 1 транспозиций} begin swap(pred_perest[i](j), pred_perest[i](j + 1)); {меняем j и j + 1 элементы местами} t := false; writeln(pred_perest[i]); end; end else begin vstavka(pred_perest[i], t); {вставляем в начало, если t = false} writeln(pred_perest[i]); for j := n - 1 downto 1 do begin swap(pred_perest[i](j), pred_perest[i](j + 1)); {меняем j и j + 1 элементы местами} t := true; writeln(pred_perest[i]); end; end;
Сведение задачи построения кода Грея для перестановок к графам
Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам $f$ и $g$, соединены ребром, если $g$ образуется из $f$ однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе.
См. также
Литература
Романовский, И.В. Дискретный Анализ - Санкт-Петербург 2003 стр. 39-41