Изменения
Нет описания правки
<math>NP \subset P/poly</math> то <math>\Sigma_2=\Pi_2</math>
== Доказательство ==
Пусть есть логические схемы для <tex>NP</tex> (для любой задачи из NP). Зафиксируем любую задачу из <tex>NP</tex>. Например пусть <tex>SAT</tex> разрешается логическими схемами <tex> C_1...C_n... </tex> (<tex>SAT</tex> с одним битом разрешается логической схемой <tex>C_1</tex>, <tex>SAT</tex> с двумя переменными логической схемой <tex>C_2</tex> и так далее).
'''Что значит разрешается логической схемой? '''Это значит что если на вход логической схеме подать каким-то логичным образом закодированную формулу, то на выходе получется логичным образом в виде 0 и 1 закодированный ответ - имеется разложение или нет. И причем размер этой логической схемы <tex>|C_n|\le p(n) </tex>, где <tex>p</tex> - какой-то полином от <tex>n</tex>.
Не утверждается, что их можно как то конструктивно построить. Если бы их было возможно построить за полином, то это бы означало, что <tex>SAT_2=\Pi_2</tex> и значит <tex>P = NP</tex>.
Рассмотрим язык <tex>L\in \Pi_2</tex>. Это означает, что <tex>x\in L \Leftrightarrow \forall{y} \exists{z}: \psi{(x,y,x)}</tex>
'''Что такое <tex>\exists{z}:\psi{(x,y,z)}</tex>? ''' Обозначим пары <tex><x,y></tex>, для которых такой <tex>z</tex> существует как какой нибудь язык <tex>L_1</tex>.
<tex>L_1 = \{<x,y>|\exists{z}: \psi{(x,y,z)}\}</tex>.
Нужно доказать что <tex>L\in \Sigma_1</tex>
'''Что такое <tex><x,y> \subset{L1}</tex>?'''
Если <tex>L_1\in{} NP \Rightarrow тоL_1 \le{}_m SAT</tex> по карпу с помощью <tex>f</tex>, т.е. <tex>L=\{x|\forall{y} f(<x,y>)\in{SAT}\}</tex>
'''Что такое <tex>f(<x,y>)\subset{SAT}</tex>?'''
<tex>f(<x,y>)\subset{SAT}</tex> - для некоторого набора логических схем это означает выполнимость всего этого набора. Если предположить, что набор этих схем нам известен то получится что <tex>L=\{x|\forall{y} C_n(f(<x,y>))=1\}</tex> где <tex>n</tex>- длина входа <tex><x,y></tex>.
<tex>L=\{x|\exists{C_n}: C_n решает SAT и \forall{y} C_n(f(<x,y>))=1\}</tex>
'''Что такое Cn Решает SAT? ''' Запишем это используя квантор "<tex>\forall{}</tex>".
<tex>C_n</tex> решает <tex>SAT</tex> <tex>\Leftrightarrow</tex> если <tex>\forall{\varphi} \forall{x} (fi(x)=1 \Rightarrow C_n(fi)=1)</tex>