Антисимметричное отношение — различия между версиями
Dima (обсуждение | вклад) |
Dima (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | |||
− | |||
== Основные определения == | == Основные определения == | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношений <tex> | + | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношений <tex>aRb</tex> и <tex>bRa</tex> следует равенство <tex>a</tex> и <tex>b</tex>. |
}} | }} | ||
− | :<tex>\forall a, b \in X,\ | + | :<tex>\forall a, b \in X,\ aRb \wedge bRa \; \Rightarrow \; a = b</tex> |
Или эквивалентное | Или эквивалентное | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Бинарное отношение <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''', если для любых неравных элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношения <tex> | + | Бинарное отношение <tex>R</tex> на множестве <tex>X</tex> называется '''антисимметричным''', если для любых неравных элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> из выполнения отношения <tex>aRb</tex> следует невыполнение отношения <tex>bRa</tex>. |
}} | }} | ||
− | :<tex>\forall a, b \in X,\ | + | :<tex>\forall a, b \in X,\ aRb \wedge a \ne b \Rightarrow \lnot bRa</tex> |
− | Определение антисимметричного отношения как <tex> | + | Определение антисимметричного отношения как <tex> aRb \Rightarrow \neg bRa </tex> является избыточным (и потому неверным), поскольку из такого определения также следует [[Рефлексивное_отношение| антирефлексивность]] R. |
Антисимметричность отношения не исключает симметричности. Существуют бинарные отношения: | Антисимметричность отношения не исключает симметричности. Существуют бинарные отношения: | ||
Строка 23: | Строка 21: | ||
*антисимметричные, но не симметричные ("меньше или равно", "больше или равно"); | *антисимметричные, но не симметричные ("меньше или равно", "больше или равно"); | ||
− | Следует различать | + | Антирефлексивное антисимметричное отношение иногда называют асимметричным. Следует различать эти два понятия. Формальное определение: |
{{Определение | {{Определение | ||
|definition = | |definition = | ||
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''асимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> одновременное выполнение отношений <tex>a R b</tex> и <tex>b R a</tex> невозможно. | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''асимметричным''', если для любых элементов <tex>a</tex> и <tex>b</tex> множества <tex>X</tex> одновременное выполнение отношений <tex>a R b</tex> и <tex>b R a</tex> невозможно. | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Примеры антисимметричных отношений == | == Примеры антисимметричных отношений == | ||
Строка 74: | Строка 64: | ||
#<tex>a^{-1}</tex> | #<tex>a^{-1}</tex> | ||
#<tex>b^{-1}</tex> | #<tex>b^{-1}</tex> | ||
− | Однако объединение и композиция <tex>a</tex> и <tex>b</tex> | + | Однако объединение и композиция <tex>a</tex> и <tex>b</tex> могут не сохранять антисимметричности. |
==См. также== | ==См. также== |
Версия 07:06, 14 декабря 2011
Содержание
Основные определения
Определение: |
Бинарное отношение на множестве называется антисимметричным, если для любых элементов и множества из выполнения отношений и следует равенство и . |
Или эквивалентное
Определение: |
Бинарное отношение | на множестве называется антисимметричным, если для любых неравных элементов и множества из выполнения отношения следует невыполнение отношения .
Определение антисимметричного отношения как антирефлексивность R.
является избыточным (и потому неверным), поскольку из такого определения также следуетАнтисимметричность отношения не исключает симметричности. Существуют бинарные отношения:
- одновременно симметричные и антисимметричные (отношение равенства);
- ни симметричные, ни антисимметричные;
- симметричные, но не антисимметричные;
- антисимметричные, но не симметричные ("меньше или равно", "больше или равно");
Антирефлексивное антисимметричное отношение иногда называют асимметричным. Следует различать эти два понятия. Формальное определение:
Определение: |
Бинарное отношение на множестве называется асимметричным, если для любых элементов и множества одновременное выполнение отношений и невозможно. |
Примеры антисимметричных отношений
Примерами антисимметричных отношений являются, по определению, все отношения полного и частичного порядка( и другие).
Антисимметрично отношение делимости на натуральных числах (если
и , то )Отношение включения на
, где - универсум, антисимметрично ( ).Свойства антисимметричного отношения
Матрица смежности антисимметричного отношения может содержать единицы на главной диагонали, притом если элемент
матрицы равен единице, то элемент равен нулю. Отсюда следует, что матрица , где - матрица смежности некоторого антисимметричного отношения, может содержать 2 только на главной диагонали.Например, если
— матрица смежности отношения " " на ; — матрица смежности отношения делимости на том же множестве , то
Ориентированный граф, изображающий антисимметричное отношение не имеет двух дуг с противоположной ориентацией между двумя различными вершинами, однако в нём могут быть петли.
Если
и - некоторые антисимметричные отношения, то антисимметричными также являются отношения:Однако объединение и композиция
и могут не сохранять антисимметричности.