Алгоритм масштабирования потока — различия между версиями
(→Оценка сложности) |
|||
Строка 20: | Строка 20: | ||
|proof= | |proof= | ||
[[Файл:Scaling.jpg|right]] | [[Файл:Scaling.jpg|right]] | ||
+ | |||
+ | Количество итераций — <tex> O(\log U) </tex>. Докажем, что сложность каждой итерации — <tex> O(E^2) </tex>. | ||
+ | |||
На каждом шаге алгоритм выполняет в худшем случае <tex>O(E)</tex> увеличений потока. Докажем это. Пусть <tex>\Delta = 2^k</tex>. В конце шага множество вершин графа можно разбить на две части: <tex>A_k</tex> и <tex>\overline{A_k}</tex>. Все рёбра, выходящие из <tex>A_k</tex>, имеют остаточную пропускную способность менее <tex>2^k</tex>. Наибольшее количество рёбер между <tex>A_k</tex> и <tex>\overline{A_k}</tex> равно <tex>E</tex>. Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением <tex>k</tex> максимально составляет <tex>2^kE</tex>. Каждый увеличивающий путь при данном <tex>k</tex> имеет пропускную способность как минимум <tex>2^k</tex>. На предыдущем шаге, с масштабом <tex>k+1</tex>, остаточный поток ограничен <tex>2^{k+1}E</tex>. Значит максимальное число появившихся увеличивающих путей равно <tex>2E</tex>. Увеличивающий путь можно найти за <tex>O(E)</tex>, используя [[Обход_в_ширину | BFS]]. Количество шагов <tex>O(\log_2U)</tex>. Итоговая сложность <tex>O(E^2\log_2U)</tex>. | На каждом шаге алгоритм выполняет в худшем случае <tex>O(E)</tex> увеличений потока. Докажем это. Пусть <tex>\Delta = 2^k</tex>. В конце шага множество вершин графа можно разбить на две части: <tex>A_k</tex> и <tex>\overline{A_k}</tex>. Все рёбра, выходящие из <tex>A_k</tex>, имеют остаточную пропускную способность менее <tex>2^k</tex>. Наибольшее количество рёбер между <tex>A_k</tex> и <tex>\overline{A_k}</tex> равно <tex>E</tex>. Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением <tex>k</tex> максимально составляет <tex>2^kE</tex>. Каждый увеличивающий путь при данном <tex>k</tex> имеет пропускную способность как минимум <tex>2^k</tex>. На предыдущем шаге, с масштабом <tex>k+1</tex>, остаточный поток ограничен <tex>2^{k+1}E</tex>. Значит максимальное число появившихся увеличивающих путей равно <tex>2E</tex>. Увеличивающий путь можно найти за <tex>O(E)</tex>, используя [[Обход_в_ширину | BFS]]. Количество шагов <tex>O(\log_2U)</tex>. Итоговая сложность <tex>O(E^2\log_2U)</tex>. | ||
}} | }} |
Версия 23:37, 18 декабря 2011
Алгоритм масштабирования потока — алгоритм поиска максимального потока путём регулирования пропускной способности рёбер. Этот алгоритм работает в предположении, что все пропускные способности рёбер целые, так как они легко представимы в двоичном виде.
Содержание
Идея
Идея алгоритма в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным.
Пусть
— граф, — максимальная пропускная способность. Запишем пропускную способность каждого ребра в двоичном виде. Тогда каждое число будет занимать бит.
Методом Форда-Фалкерсона находим поток
для графа с урезанными пропускными способностями . Добавим следующий бит и находим следующее приближение для графа с новыми пропускными способностями .После
итерации получим ответ к задаче, так как после с каждым шагом приближение становится точнее.Оценка сложности
Утверждение: |
Время работы алгоритма — . |
Количество итераций — На каждом шаге алгоритм выполняет в худшем случае . Докажем, что сложность каждой итерации — . увеличений потока. Докажем это. Пусть . В конце шага множество вершин графа можно разбить на две части: и . Все рёбра, выходящие из , имеют остаточную пропускную способность менее . Наибольшее количество рёбер между и равно . Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением максимально составляет . Каждый увеличивающий путь при данном имеет пропускную способность как минимум . На предыдущем шаге, с масштабом , остаточный поток ограничен . Значит максимальное число появившихся увеличивающих путей равно . Увеличивающий путь можно найти за , используя BFS. Количество шагов . Итоговая сложность . |
Псевдокод
Capacity-Scalingwhile do while в существует путь с пропускной способностью большей do путь с пропускной способностью большей увеличить поток по рёбрам на обновить