Замкнутость разрешимых и перечислимых языков относительно теоретико-множественных и алгебраических операций — различия между версиями
м |
м |
||
Строка 77: | Строка 77: | ||
Пусть <tex>p_1</tex> и <tex>p_2</tex> {{---}} полуразрешающие программы для языков <tex>L_1</tex> и <tex>L_2</tex> соответственно. Для доказательства достаточно написать полуразрешающую программу для каждого случая. Заметим, что <tex>p_1</tex> и <tex>p_2</tex> могут зависнуть при использовании в полуразрешающей программе для соответствующего языка, но это допустимо. | Пусть <tex>p_1</tex> и <tex>p_2</tex> {{---}} полуразрешающие программы для языков <tex>L_1</tex> и <tex>L_2</tex> соответственно. Для доказательства достаточно написать полуразрешающую программу для каждого случая. Заметим, что <tex>p_1</tex> и <tex>p_2</tex> могут зависнуть при использовании в полуразрешающей программе для соответствующего языка, но это допустимо. | ||
− | * | + | * Полуразрешающая программа для языка <tex> L_1 \cup L_2 :</tex> |
<tex>p(x)</tex> | <tex>p(x)</tex> | ||
Строка 130: | Строка 130: | ||
== Литература == | == Литература == | ||
− | * ''Верещагин Н. К., Шень А.'' '''Лекции по математической логике и теории алгоритов. Часть 3. Вычислимые функции''' {{ | + | * ''Верещагин Н. К., Шень А.'' '''Лекции по математической логике и теории алгоритов. Часть 3. Вычислимые функции''' {{---}} М.: МЦНМО, 1999 |
Версия 09:52, 20 декабря 2011
Теорема: |
Языки — разрешимы, тогда следующие языки разрешимы:
|
Доказательство: |
Пусть и — разрешающие программы для языков и соответственно. Для доказательства достаточно написать разрешающую программу (разрешитель) для каждого случая.
return
return
return
return
return
forall все возможные разбиения текущее разбиение if return 1 return 0 Разрешитель будет перебирать все возможные разбиения данного ему слова на подслова, и для каждого проверять принадлежность . Если хотя бы в одном разбиении все подслова будут принадлежать , то все слово принадлежит , иначе — не принадлежит.
Разрешитель будет перебирать все возможные разбиения на два слова и проверять принадлежность первого слова forall все возможные разбиения на две части текущее разбиение if return 1 return 0 и второго слова . Если хотя бы для одного разбиения оба разрешителя вернут 1, то слово принадлежит , иначе — не принадлежит. |
Теорема: |
Языки — перечислимы, тогда следующие языки перечислимы:
|
Доказательство: |
Пусть и — полуразрешающие программы для языков и соответственно. Для доказательства достаточно написать полуразрешающую программу для каждого случая. Заметим, что и могут зависнуть при использовании в полуразрешающей программе для соответствующего языка, но это допустимо.
for if return 1
if return 1
if return 1
forall все возможные разбиения текущее разбиение if return 1
forall все возможные разбиения на две части текущее разбиение if return 1 |
Теорема: |
Языки — перечислимы, тогда следующие языки могут быть не перечислимы:
|
Доказательство: |
Рассмотрим язык существуют перечислимые, но не разрешимые языки, следовательно, язык может быть не перечислим. Теперь рассмотрим . Предположим, что он перечислим. Тогда, имея какое-либо слово, мы можем одновременно запустить перечислители для и . В какой-то момент времени слово появится либо в выводе перечислителя для , либо в выводе перечислителя для . Тогда получится что разрешим, так как про любое слово мы можем узнать принадлежит оно или не принадлежит. Но мы знаем, что . В качестве возьмем язык, состоящий из всех слов. Тогда получится, что язык это . Про язык мы знаем, что он перечислим не всегда, следовательно и язык также не всегда перечислим. |
Литература
- Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999