Теоремы Карзанова о числе итераций алгоритма Диница в сети с целочисленными пропускными способностями — различия между версиями
Строка 107: | Строка 107: | ||
Таким образом, прошло <tex>O(C^{1/3}|V|^{2/3})</tex> фаз, и <tex>O(C^{1/3}|V|^{2/3})</tex> фаз осталось. Теорема доказана. | Таким образом, прошло <tex>O(C^{1/3}|V|^{2/3})</tex> фаз, и <tex>O(C^{1/3}|V|^{2/3})</tex> фаз осталось. Теорема доказана. | ||
}} | }} | ||
+ | |||
+ | == Литература == | ||
+ | * On the efficiency of Maximum-Flow Algorithms on Networks with Small Integer Capacities. David Fernandez-Baca and Charles U.Martel |
Версия 04:42, 27 декабря 2011
Определения
Определение: |
Пусть Обозначим и , как максимальная пропускная способность ребра и максимальный поток соответсвенно.. . - потенциал вершины . Тогда общий потенциал выражается формулой: .Остаточную сеть обозначим Обозначим длину слоистой сети . - как длину кратчайшего пути в . | - сеть с целочисленными пропускными способностями.
Теоремы
Идея доказательства следующая. Сперва мы получим оценку длины слоистой сети с точки зрения величины максимального потока и другого интересующего нас параметра(здесь мы рассматриваем P и C).Эта оценка будет возрастающей функцией интересующего параметра и убывающей функцией от максимального потока. Мы разобьем вычисление максимального потока на 2 части. В первой мы предполагаем, что поток достиг величины, находящейся в пределах
от оптимального. Таким образом, потребуется не больше дополнительных фаз перед завершением. В этом и состоит вторая часть вычислений. Теперь используем оценку длины слоистой сети чтобы опредлить предел количества фаз, осуществляемых в 1 части. выбрано так, что оно такого же порядка, что и длина слоистой сети в конце 1 части вычислений. Таким образов количество фаз .Лемма (1): |
Пусть - расстояние между и в сети с текущим потоком, равным 0, и максимальным потоком, равным .
Тогда |
Доказательство: |
Пусть - расстояние между и , а - набор вершин, удаленных от на . - разъединяющее множество узлов: при его удалении исчезают все направлнные пути из в . Следуя правилу сохранения потока, если обозначить как любой допустимый поток, то единиц потока должно проходить через . Но суммарное количество потока, которое может проходить через любую вершину не превосходит ее потенциала. Отсюда, если обозначить как общий потенциал вершин из , то мы имеем:
для любого допустимого потока . В частности, , таким образом получаем:и лемма доказана. |
Лемма (2): |
Пусть - сеть, а - допустимый поток в этой сети. Тогда общий потенциал в остаточной сети равен общему потенциалу . |
Доказательство: |
Пусть - функция пропускных способностей в , а - потенциал, множество входящих ребер и множество выходящих ребер вершины из .Достаточно доказать, что . Ребру из соответствуют ребро из с пропускной способностью , и ребро из с пропускной способностью . Аналогично, ребру из соответствуют ребра из с пропускной способностью и с пропускной способностью . Используя правило сохранения потока, нетрудно проверить, что
и что и требовалось доказать. |
Теорема (Первая теорема Карзанова): |
Число итераций алгоритма Диница в сети ( , - исток и сток, соответственно.) с целочисленными пропускными способностями - . |
Доказательство: |
Пусть - максимальный поток в сети . Теорема верна для , так как после каждой фазы поток увеличивается хотя бы на 1. Если , рассмотрим последнюю фазу, на момент начала выполнения которой поток в сети был меньше, чем . После этого потребуется не больше фаз, чтобы найти максимальный поток. На предыдущей фазе поток ( ) в был не больше , таким образом .- сеть с максимальным потоком и потенциалом (по Лемме(2)). Поэтому мы можем использовать Лемму(1) чтобы оценить расстояние между и в . Отсюда получаем оценку длины ( ) слоистой сети: Так как каждая фаза увеличивает длину слоистой сети минимум на один, то осуществляется не больше фаз. Таким образом происходит не более фаз. |
Лемма (3): |
Пусть в сети нет параллельных ребер. - поток в , а - максимальный поток в . Тогда расстояние между и в таково: . |
Доказательство: |
Как и раньше, обозначим Таким образом как набор вершин на расстоянии от . Множество и определяют разрез . Пропускная способность этого разреза не больше , так как все ребра между и также являются ребрами между и и не более чем двумя параллельными ребрами, исходящими из какой-то вершины в остаточной сети. По теореме о максимальном потоке/минимальном разрезе, . ограничен наименьшим из . Но этот минимум максимизируется, когда для , таким образом . Выражая получаем нужное. |
Теорема (Вторая теорема Карзанова): |
Число итераций алгоритма Диница с целочисленными пропускными способностями - . |
Доказательство: |
Если , то теорема очевидна. Положим, что , и рассотрим последнбб фазу, в которой поток не превышает . В этот момент осталось не более фаз, и - сеть с максимальным потоком . Мы можем применить Лемму(2), чтобы оценить длину слоистой сети, и, соответственно, количество выполненных фаз:
Таким образом, прошло . фаз, и фаз осталось. Теорема доказана. |
Литература
- On the efficiency of Maximum-Flow Algorithms on Networks with Small Integer Capacities. David Fernandez-Baca and Charles U.Martel