Поток минимальной стоимости — различия между версиями
Proshev (обсуждение | вклад) |
Proshev (обсуждение | вклад) |
||
Строка 16: | Строка 16: | ||
Популярная задача, которая легко сводится к потоку минимальной стоимости - [[Сведение_задачи_о_назначениях_к_задаче_о_потоке_минимальной_стоимости|задача о назначениях]]. | Популярная задача, которая легко сводится к потоку минимальной стоимости - [[Сведение_задачи_о_назначениях_к_задаче_о_потоке_минимальной_стоимости|задача о назначениях]]. | ||
− | == | + | == Ссылки == |
− | *[http://ru.wikipedia.org/wiki/Поток_минимальной_стоимости Википедия] | + | *[http://ru.wikipedia.org/wiki/Поток_минимальной_стоимости Википедия - Поток минимальной стоимости] |
+ | *[http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/min-cost-max-flow-2009 Визуализатор алгоритма нахождения максимального потока минимальной стоимости] | ||
[[Категория: Задача о потоке минимальной стоимости]] | [[Категория: Задача о потоке минимальной стоимости]] |
Версия 07:22, 27 декабря 2011
Определение задачи
Определение: |
Дано число Суть задачи — найти поток f(u, v):
| и транспортная сеть с источником и стоком , где ребра имеют пропускную способность и цену .
Алгоритмы решения
- Найти любой поток величины , после чего избавиться от всех циклов отрицательной стоимости в остаточном графе. Чтобы избавиться от цикла, надо пустить по нему максимально возможный поток.
- Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости.
- Использование потенциалов Джонсона при поиске потока минимальной стоимости (модификация предыдущего алгоритма).
Задача о назначениях
Популярная задача, которая легко сводится к потоку минимальной стоимости - задача о назначениях.