Обсуждение:Полукольца и алгебры — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 15: Строка 15:
 
У меня записано, что надо  
 
У меня записано, что надо  
 
<tex> \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus (B_1 \bigcup B_2) \cup \ldots \cup (B_n \setminus \bigcup\limits_{k = 1}^{n - 1} B_k) \cup \ldots </tex>
 
<tex> \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus (B_1 \bigcup B_2) \cup \ldots \cup (B_n \setminus \bigcup\limits_{k = 1}^{n - 1} B_k) \cup \ldots </tex>
 +
==И еще==
 +
надо добавить еще, что объединение множеств тоже входит в алгебру.
 +
<tex>B \cup C = \overline{\overline{B} \cap \overline{C}}</tex>

Версия 00:38, 3 января 2012

Определение полукольца

Тут походу должно быть что-то вроде «найдутся такие подмножества, что их дизъюнктное объединение блаблабла», из определения Додонова это вроде не очевидно. --Дмитрий Герасимов 06:23, 21 ноября 2011 (MSK)

Хотя в той версии, которую сделал я, создаётся ощущение что их должно быть конечное число, а это, наверное, не обязательно

Определение алгебры

В третьей аксиоме, наверное, должно быть [math] B, C \in \mathcal A \Rightarrow B \cup C \in \mathcal A [/math].

И, похоже, что все-таки «Из данных аксиом следует, что [math] X = \overline \varnothing \in \mathcal A [/math] и [math] B \cap C = \overline {\overline B \cup \overline C} \in \mathcal A [/math]»

Плюсаните, если я прав. --Дмитрий Герасимов 05:22, 31 декабря 2011 (MSK)

Косяк в утверждении

[math] \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus B_1) \cup \ldots \cup (B_n \setminus B_1) \cup \ldots [/math] У меня записано, что надо [math] \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus (B_1 \bigcup B_2) \cup \ldots \cup (B_n \setminus \bigcup\limits_{k = 1}^{n - 1} B_k) \cup \ldots [/math]

И еще

надо добавить еще, что объединение множеств тоже входит в алгебру. [math]B \cup C = \overline{\overline{B} \cap \overline{C}}[/math]