Мера Лебега в R^n — различия между версиями
Komarov (обсуждение | вклад) (добавлено немного теологии) |
|||
Строка 33: | Строка 33: | ||
Возьмём <tex>I = [0; 1)</tex>, <tex>\lambda I = 1</tex>, <tex> E </tex> — все рациональные числа на <tex> I </tex>. <tex> E </tex> — счётное, всюду плотное. Тогда <tex> \lambda E = 0</tex>, а <tex> \lambda \overline E = 1 - \lambda E = 1 </tex>. То есть для иррациональных чисел мера Лебега — 1. Парадокс({{TODO| t = почему?}}) | Возьмём <tex>I = [0; 1)</tex>, <tex>\lambda I = 1</tex>, <tex> E </tex> — все рациональные числа на <tex> I </tex>. <tex> E </tex> — счётное, всюду плотное. Тогда <tex> \lambda E = 0</tex>, а <tex> \lambda \overline E = 1 - \lambda E = 1 </tex>. То есть для иррациональных чисел мера Лебега — 1. Парадокс({{TODO| t = почему?}}) | ||
− | + | {{Утверждение | |
− | + | |statement=Бог есть | |
− | + | |proof= | |
+ | К сожалению, человечество может работать лишь с натуральными и рациональными числами. Сути же иррациональных чисел им не понять. Однако, множество рациональных чисел нульмерно. Но <tex>\lambda[0;1) = 1</tex>. Ввиду своей ненульмерности, иррациональные числа неподвластны человеку. Значит, <s>б</s>Бог есть. | ||
+ | }} | ||
{{TODO|t=Achtung! Тут есть ещё что-то(или уже нет?)}} | {{TODO|t=Achtung! Тут есть ещё что-то(или уже нет?)}} |
Версия 03:07, 5 января 2012
Эта статья находится в разработке!
TODO: ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ
Последняя теорема показывает, что
— мера на .Применим к объёму ячеек процесс Каратеодори. В результате
будет распространено на -алгебру множеств .
Определение: |
Полученная мера | — -мерная мера Лебега (можно просто ).
Определение: |
Множества | — измеримые по Лебегу
Цель этого параграфа — устрановить структуру множества, измеримого по Лебегу. Пойдём от простого к сложному, базируясь на общем критерии -измеримости и на том, что — -алгебра.
обозначим за
Тогда
— одноэлементное множество. Так как каждая ячейка измерима по Лебегу, — -алгебра, то получаем, что любое одноэлементное множество(точка) измеримо по Лебегу.
По монотонности меры,
Значит,
. Итак, мера точки равна нулю.— не более, чем счётное множество точек. Тогда
Значит, любое счётное множество точек измеримо и нульмерно.
Возьмём TODO: почему?)
, , — все рациональные числа на . — счётное, всюду плотное. Тогда , а . То есть для иррациональных чисел мера Лебега — 1. Парадокс(Утверждение: |
Бог есть |
К сожалению, человечество может работать лишь с натуральными и рациональными числами. Сути же иррациональных чисел им не понять. Однако, множество рациональных чисел нульмерно. Но | . Ввиду своей ненульмерности, иррациональные числа неподвластны человеку. Значит,
TODO: Achtung! Тут есть ещё что-то(или уже нет?)