Функциональный анализ — различия между версиями
Ulyantsev (обсуждение | вклад) |
Ulyantsev (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
В прошлых сериях: | В прошлых сериях: | ||
+ | |||
+ | *'''Пространство непрерывных функций''' — линейное нормированное пространство, элементами которого являются непрерывные на отрезке <tex>[a,b]</tex> функции (обычно обозначается <tex>{\mathrm C}[a,b]</tex>). Норма в этом пространстве определяется следующим образом: <tex>||x||_{{\mathbf C}[a,b]}=\max_{t\in [a,b]}|x(t)|</tex> | ||
* '''Теорема Рисса — Фреше:''' Для любого непрерывного линейного функционала <tex>f</tex> на Гильбертовом пространстве <tex> H</tex> существует единственный вектор <tex>y \in H</tex> такой, что <tex>f(x)=(x,y)</tex> для любого <tex>x \in H</tex>. При этом норма линейного функционала <tex>f</tex> совпадает с нормой вектора <tex>y</tex>: | * '''Теорема Рисса — Фреше:''' Для любого непрерывного линейного функционала <tex>f</tex> на Гильбертовом пространстве <tex> H</tex> существует единственный вектор <tex>y \in H</tex> такой, что <tex>f(x)=(x,y)</tex> для любого <tex>x \in H</tex>. При этом норма линейного функционала <tex>f</tex> совпадает с нормой вектора <tex>y</tex>: | ||
<tex>\|f\|=\sup_{\|x\|=1} |f(x)|= \sqrt{(y,y)}</tex>. Теорема также означает, что пространство всех линейных ограниченных функционалов над <tex>H</tex> изоморофно пространству <tex>H</tex>. | <tex>\|f\|=\sup_{\|x\|=1} |f(x)|= \sqrt{(y,y)}</tex>. Теорема также означает, что пространство всех линейных ограниченных функционалов над <tex>H</tex> изоморофно пространству <tex>H</tex>. | ||
+ | |||
+ | |||
1. <tex>A^{*}</tex> и его ограниченность. | 1. <tex>A^{*}</tex> и его ограниченность. |
Версия 20:21, 18 июня 2010
Здесь я постараюсь написать теоретический минимум по второй части курса функционального анализа. Если вы читаете это, самоуничтожьтесь.
В прошлых сериях:
- Пространство непрерывных функций — линейное нормированное пространство, элементами которого являются непрерывные на отрезке функции (обычно обозначается ). Норма в этом пространстве определяется следующим образом:
- Теорема Рисса — Фреше: Для любого непрерывного линейного функционала на Гильбертовом пространстве существует единственный вектор такой, что для любого . При этом норма линейного функционала совпадает с нормой вектора :
. Теорема также означает, что пространство всех линейных ограниченных функционалов над изоморофно пространству .
1.
и его ограниченность.2. Ортогональные дополнения Е и Е*.
3. Ортогональное дополнение R(A).
4. Ортогональное дополнение R(A*).
5. Арифметика компактных операторов.
6. О компактности А*, сепарабельность R(A).
7. Базис Шаудера, лемма о координатном пространстве.
8. Почти конечномерность компактного оператора.
9. О размерности Ker(I-A) компактного А.
10. Условие замкнутости R(A) на языке решений операторного уравнения.
11. О замкнутости R(I-A) компактного А.
12. Лемма о Ker(I-A)*n компактного А.
13. Об условии справедливости равенства R(I-A)=Е.
14. Альтернатива Фредгольма-Шаудера.
15. О спектре компактного оператора.
16. О вещественности спектра ограниченного самосопряженного оператора.
17. О характеризации спектра и резольвентного множества ограниченного самосопряженного оператора.
18. О числах m- и m+.
19. Спектральный радиус ограниченного самосопряженного оператора.
20. Теорема Гильберта-Шмидта.
21. О диагонализации компактного самосопряженного оператора и разложении его резольвенты.
22. Теорема Банаха о сжимающем отображении.
23. Дифференциал Фреше.
24. Неравенство Лагранжа.
25. Локальная теорема о неявном отображении.
26. Теорема о локальной обратимости отображения.
27. Локальная теорема о простой итерации
28. Локальная теорема о методе Ньютона-Канторовича.
29. О проекторах Шаудера.
30. Теорема Шаудера о неподвижной точке.