Мера Лебега в R^n — различия между версиями
Sementry (обсуждение | вклад) м (добавил формулировки недостающих теорем) |
Sementry (обсуждение | вклад) (добавил теорему о внешней мере Лебега) |
||
Строка 58: | Строка 58: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> E \subset \mathbb R ^n. Тогда <tex> \lambda^*E = \inf\limits_{G: E \subset G} \lambda G </tex> (<tex> G </tex> - открытые множества). | + | Пусть <tex> E \subset \mathbb R ^n </tex>. Тогда <tex> \lambda^*E = \inf\limits_{G: E \subset G} \lambda G </tex> (<tex> G </tex> - открытые множества). |
|proof= | |proof= | ||
− | + | Так как <tex> E \subset G </tex>, то, по монотонности внешней меры, <tex> \lambda^* E \le \lambda^* G = \lambda G </tex>. Переходя к верхней грани, получаем <tex> \lambda^*E \le \inf\limits_{G: E \subset G} \lambda G </tex>. | |
+ | |||
+ | Докажем теперь противоположное неравенство. | ||
+ | Как обычно, будем рассматривать случай <tex> \lambda^* E < +\infty </tex>, для <tex> \lambda^* E = +\infty </tex> оно тривиально. | ||
+ | |||
+ | Внешняя мера Лебега порождена функцией объема на полукольце ячеек. Значит, <tex> \forall \varepsilon > 0: E \subset \bigcup\limits_{m} A_m </tex> - объединение ячеек, такое, что <tex> \sum\limits_{m} v(A_m) < \lambda^* E + \varepsilon </tex>. | ||
+ | |||
+ | За счет непрерывности объема, для любого <tex> A_m </tex> существует <tex> B_m </tex> - открытый параллелепипед, такой, что <tex> A_m \subset B_m </tex> и <tex> v(B_m) < v(A_m) + \frac{\varepsilon}{2^m} </tex>. | ||
+ | |||
+ | <tex> A_m \subset B_m </tex>, поэтому <tex>E \subset \bigcup\limits_m B_m = G, G </tex> - открытое множество. | ||
+ | |||
+ | <tex> \sum\limits_m v(A_m) \le \sum\limits_m A_m + \varepsilon \sum\limits_m \frac1{2^m} = \sum\limits_m A_m + \varepsilon </tex> | ||
+ | |||
+ | Как мы ранее выяснили, <tex> \sum\limits_{m} v(A_m) < \lambda^* E + \varepsilon </tex>, поэтому, <tex> \sum\limits_m v(B_m) < \lambda^* E + 2\varepsilon </tex>. | ||
+ | |||
+ | Так как <tex> G = \bigcup\limits_m B_m </tex>, то <tex> \lambda G \le \sum\limits_m v(B_m) </tex>. | ||
+ | |||
+ | Значит, для любого <tex> \varepsilon > 0 </tex> есть открытое <tex> G </tex>, содержащее <tex> E </tex>, такое, что <tex> \lambda G < \lambda^* E + 2\varepsilon </tex>. | ||
+ | |||
+ | При <tex> \varepsilon \rightarrow 0 </tex> получаем требуемое неравенство. | ||
}} | }} | ||
Версия 06:55, 6 января 2012
TODO: ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ
Последняя теорема показывает, что
— мера на .Применим к объёму ячеек процесс Каратеодори. В результате
будет распространено на -алгебру множеств .
Определение: |
Полученная мера | — -мерная мера Лебега (можно просто ).
Определение: |
Множества | — измеримые по Лебегу.
Цель этого параграфа — устрановить структуру множества, измеримого по Лебегу. Пойдём от простого к сложному, базируясь на общем критерии -измеримости и на том, что — -алгебра.
Измеримые по Лебегу множества
обозначим за
Тогда
— одноэлементное множество. Так как каждая ячейка измерима по Лебегу, — -алгебра, то получаем, что любое одноэлементное множество(точка) измеримо по Лебегу.
По монотонности меры,
Значит,
. Итак, мера точки равна нулю.— не более, чем счётное множество точек. Тогда
Значит, любое счётное множество точек измеримо и нульмерно.
Возьмём
, , — все рациональные числа на . — счётное, всюду плотное. Тогда , а . То есть для иррациональных чисел мера Лебега — 1. Это, в некотором смысле, парадоксальный результат, потому что искусственных объектов, которые мы определили в начале всего курса матанализа, оказалось ужасно, невероятно, невообразимо много по сравнению с познаваемыми нами рациональными числами.Утверждение: |
Бог есть. |
К сожалению, человечество может работать лишь с натуральными и рациональными числами. Сути же иррациональных чисел им не понять. Однако, множество рациональных чисел нульмерно. Но | . Ввиду своей ненульмерности, иррациональные числа неподвластны человеку. Значит,
Если взять произвольный параллелепипед в
, то, за счет непрерывности обьема, как функции точек параллелепипеда, мы можем строить и ячейку в нем и ячейку, включающую его (причем объем ячеек отличается на ). Значит, параллелепипед тоже измерим. Рассмотрим открытое множество в . Оно - объединение открытых шаров, или множество, которое вместе с каждой точкой содержит и открытый шар с центром в этой точке.Утверждение: |
Открытое множество в измеримо по Лебегу. |
Множество точек с рациональными координатами всюду плотно. Если рассмотреть совокупность открытых шаров с центром в рациональных точках и рациональных радиусов, то множество таких шаров будет счетно. Вместо шаров можно использовать открытые параллелепипеды, которые, как известно, измеримы. Если мы возьмем любую точку, то она будет содержаться во множестве вместе с некоторым параллелеипипедом. Далее, эту точку можно приблизить рациональными координатами сколь угодно точно; для каждого приближения можно построить параллеллепипед с этой точкой, содержащийся в уже построенном параллелепипеде. Значит, открытое множество можно представить, как счетное объединение открытых параллелепипедов, содержащихся в нем, поэтому, оно измеримо. |
Класс измеримых множеств есть
-алгебра. Замкнутое множество есть дополнение к открытому, значит, оно тоже измеримо.Логика рассуждений во многих последующих теоремах будет такова: из множеств, измеримость которых ясна, путем счетного числа операций пересечения и объединения пошагово стоим интересующий нас объект.
Теорема о внешней мере Лебега
Теорема: |
Пусть . Тогда ( - открытые множества). |
Доказательство: |
Так как , то, по монотонности внешней меры, . Переходя к верхней грани, получаем .Докажем теперь противоположное неравенство. Как обычно, будем рассматривать случай , для оно тривиально.Внешняя мера Лебега порождена функцией объема на полукольце ячеек. Значит, - объединение ячеек, такое, что .За счет непрерывности объема, для любого существует - открытый параллелепипед, такой, что и ., поэтому - открытое множество.
Как мы ранее выяснили, , поэтому, .Так как , то .Значит, для любого При есть открытое , содержащее , такое, что . получаем требуемое неравенство. |
Выведем ряд важных следствий из этой теоремы:
Теорема: |
Пусть измеримо по Лебегу. Тогда:
|
Доказательство: |
пыщь-пыщь |
Теорема: |
Пусть измеримо по Лебегу. Тогда (F - замкнутые множества). |
Доказательство: |
пыщь-пыщь |
Если
замкнуто, то оно называется множеством типа .Если
открыто, то оно называется множеством типа .Такие множества также являются измеримыми по Лебегу (это очевидно?).
Теорема: |
Пусть измеримо по Лебегу. Тогда оно представимо в виде , причем A - множество типа , а . |
Доказательство: |
пыщь-пыщь |