Мера Лебега в R^n — различия между версиями
Sementry (обсуждение | вклад) (добавил теорему о внешней мере Лебега) |
Sementry (обсуждение | вклад) (добавил первое следствие) |
||
Строка 82: | Строка 82: | ||
}} | }} | ||
− | Выведем ряд важных следствий из этой теоремы | + | Выведем ряд важных следствий из этой теоремы. |
+ | |||
+ | Далее нам пригодятся множества <tex> \Delta_p = [-p; p) \times [-p; p) \times \ldots \times [-p; p), p \in \mathbb N </tex> | ||
+ | |||
+ | Несложно заметить, что <tex>\mathbb R ^n = \bigcup\limits_{p=1}^{\infty} \Delta_p </tex>. | ||
{{Теорема | {{Теорема | ||
Строка 90: | Строка 94: | ||
# <tex> \forall \varepsilon </tex> существует замкнутое <tex> F </tex>, такое, что <tex> F \subset E, \lambda(E \setminus F) < \varepsilon </tex>. | # <tex> \forall \varepsilon </tex> существует замкнутое <tex> F </tex>, такое, что <tex> F \subset E, \lambda(E \setminus F) < \varepsilon </tex>. | ||
|proof= | |proof= | ||
− | + | ||
+ | Сначала докажем первый пункт теоремы. | ||
+ | |||
+ | Если мера <tex> E </tex> конечна, то просто воспользуемся только что доказанной теоремой: | ||
+ | |||
+ | <tex> \forall \varepsilon > 0 </tex> есть открытое <tex> G </tex>: <tex> \lambda G - \lambda E < \varepsilon</tex>. По аддитивности меры, <tex>\lambda G - \lambda E = \lambda (G \setminus E)</tex>, и требуемое выполнено. | ||
+ | |||
+ | Рассмотрим теперь случай, когда мера <tex>E</tex> бесконечна: | ||
+ | |||
+ | <tex>E = \bigcup\limits_{p=1}^{\infty} (E \cap \Delta_p) </tex>, для любого <tex>p</tex> верно: <tex>\lambda (E \cap \Delta_p) < \lambda (\Delta_p) < \infty</tex>. | ||
+ | |||
+ | Случай конечной меры был доказан, поэтому <tex> \forall \varepsilon </tex> можно взять <tex> G_p </tex>, такое, что <tex> E \cap \Delta_p \subset G_p, \lambda(G_p \setminus (E \cap \Delta_p)) < \frac{\varepsilon}{2^p} </tex>. | ||
+ | |||
+ | Возьмем в качестве требуемого множества <tex>G</tex> объединение всех <tex>G_p</tex>: <tex>G = \bigcup\limits_{p=1}^{\infty} G_p</tex> открыто и содержит <tex>E</tex>. | ||
+ | |||
+ | <tex>G \setminus E = \bigcup\limits_{p=1}^{\infty} (G_p \setminus (E \cap \Delta_p))</tex> | ||
+ | |||
+ | Тогда, по полуаддитивности внешней меры, <tex>\lambda (G \setminus E) \le \sum\limits_{p=1}^{\infty} (G_p \setminus (E \cap \Delta_p)) \le \sum\limits_{p=1}^{\infty} \frac{\varepsilon}{2^p} = \varepsilon</tex> | ||
+ | |||
+ | Второй пункт доказывается переходом к дополнениям: | ||
+ | |||
+ | Пусть <tex>\overline E = \mathbb R ^n \setminus E</tex>, по первому пункту, <tex> \forall \varepsilon </tex> есть открытое <tex> G:\ \overline E \subset G, \lambda(G \setminus \overline E) < \varepsilon </tex>. | ||
+ | |||
+ | Пусть <tex>F = \overline G</tex>. По определению, <tex>F</tex> {{---}} замкнутое множество. Так как <tex>\overline E \subset G</tex>, то <tex>\overline G \subset E,\ \lambda(E\setminus F) = \lambda (G \setminus \overline E) < \varepsilon</tex>, и требуемые условия выполнены. | ||
+ | |||
}} | }} | ||
Версия 07:26, 6 января 2012
TODO: ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ
Последняя теорема показывает, что
— мера на .Применим к объёму ячеек процесс Каратеодори. В результате
будет распространено на -алгебру множеств .
Определение: |
Полученная мера | — -мерная мера Лебега (можно просто ).
Определение: |
Множества | — измеримые по Лебегу.
Цель этого параграфа — устрановить структуру множества, измеримого по Лебегу. Пойдём от простого к сложному, базируясь на общем критерии -измеримости и на том, что — -алгебра.
Измеримые по Лебегу множества
обозначим за
Тогда
— одноэлементное множество. Так как каждая ячейка измерима по Лебегу, — -алгебра, то получаем, что любое одноэлементное множество(точка) измеримо по Лебегу.
По монотонности меры,
Значит,
. Итак, мера точки равна нулю.— не более, чем счётное множество точек. Тогда
Значит, любое счётное множество точек измеримо и нульмерно.
Возьмём
, , — все рациональные числа на . — счётное, всюду плотное. Тогда , а . То есть для иррациональных чисел мера Лебега — 1. Это, в некотором смысле, парадоксальный результат, потому что искусственных объектов, которые мы определили в начале всего курса матанализа, оказалось ужасно, невероятно, невообразимо много по сравнению с познаваемыми нами рациональными числами.Утверждение: |
Бог есть. |
К сожалению, человечество может работать лишь с натуральными и рациональными числами. Сути же иррациональных чисел им не понять. Однако, множество рациональных чисел нульмерно. Но | . Ввиду своей ненульмерности, иррациональные числа неподвластны человеку. Значит,
Если взять произвольный параллелепипед в
, то, за счет непрерывности обьема, как функции точек параллелепипеда, мы можем строить и ячейку в нем и ячейку, включающую его (причем объем ячеек отличается на ). Значит, параллелепипед тоже измерим. Рассмотрим открытое множество в . Оно - объединение открытых шаров, или множество, которое вместе с каждой точкой содержит и открытый шар с центром в этой точке.Утверждение: |
Открытое множество в измеримо по Лебегу. |
Множество точек с рациональными координатами всюду плотно. Если рассмотреть совокупность открытых шаров с центром в рациональных точках и рациональных радиусов, то множество таких шаров будет счетно. Вместо шаров можно использовать открытые параллелепипеды, которые, как известно, измеримы. Если мы возьмем любую точку, то она будет содержаться во множестве вместе с некоторым параллелеипипедом. Далее, эту точку можно приблизить рациональными координатами сколь угодно точно; для каждого приближения можно построить параллеллепипед с этой точкой, содержащийся в уже построенном параллелепипеде. Значит, открытое множество можно представить, как счетное объединение открытых параллелепипедов, содержащихся в нем, поэтому, оно измеримо. |
Класс измеримых множеств есть
-алгебра. Замкнутое множество есть дополнение к открытому, значит, оно тоже измеримо.Логика рассуждений во многих последующих теоремах будет такова: из множеств, измеримость которых ясна, путем счетного числа операций пересечения и объединения пошагово стоим интересующий нас объект.
Теорема о внешней мере Лебега
Теорема: |
Пусть . Тогда ( - открытые множества). |
Доказательство: |
Так как , то, по монотонности внешней меры, . Переходя к верхней грани, получаем .Докажем теперь противоположное неравенство. Как обычно, будем рассматривать случай , для оно тривиально.Внешняя мера Лебега порождена функцией объема на полукольце ячеек. Значит, - объединение ячеек, такое, что .За счет непрерывности объема, для любого существует - открытый параллелепипед, такой, что и ., поэтому - открытое множество.
Как мы ранее выяснили, , поэтому, .Так как , то .Значит, для любого При есть открытое , содержащее , такое, что . получаем требуемое неравенство. |
Выведем ряд важных следствий из этой теоремы.
Далее нам пригодятся множества
Несложно заметить, что
.Теорема: |
Пусть измеримо по Лебегу. Тогда:
|
Доказательство: |
Сначала докажем первый пункт теоремы. Если мера конечна, то просто воспользуемся только что доказанной теоремой:есть открытое : . По аддитивности меры, , и требуемое выполнено. Рассмотрим теперь случай, когда мера бесконечна:, для любого верно: . Случай конечной меры был доказан, поэтому можно взять , такое, что .Возьмем в качестве требуемого множества объединение всех : открыто и содержит .
Тогда, по полуаддитивности внешней меры, Второй пункт доказывается переходом к дополнениям: Пусть Пусть , по первому пункту, есть открытое . . По определению, — замкнутое множество. Так как , то , и требуемые условия выполнены. |
Теорема: |
Пусть измеримо по Лебегу. Тогда (F - замкнутые множества). |
Доказательство: |
пыщь-пыщь |
Если
замкнуто, то оно называется множеством типа .Если
открыто, то оно называется множеством типа .Такие множества также являются измеримыми по Лебегу (это очевидно?).
Теорема: |
Пусть измеримо по Лебегу. Тогда оно представимо в виде , причем A - множество типа , а . |
Доказательство: |
пыщь-пыщь |