Венгерский алгоритм решения задачи о назначениях — различия между версиями
Sementry (обсуждение | вклад) м (кое-что исправил) |
Sementry (обсуждение | вклад) м |
||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
− | Пусть дан взвешенный полный двудольный граф <tex> K_{n, n} </tex>, нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер. | + | Пусть дан взвешенный полный двудольный граф <tex> K_{n, n} </tex>, нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер. Далее будем обозначать левую и правую доли графа за <tex> X </tex> и <tex> Y </tex> соответственно, вес ребра <tex> xy </tex> — как <tex> c(xy) </tex>. |
== Некоторые полезные утверждения == | == Некоторые полезные утверждения == | ||
Строка 18: | Строка 18: | ||
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | Выделим в множествах <tex>X</tex> и <tex>Y</tex> подмножества <tex>X', Y'</tex>. | + | Выделим в множествах <tex>X</tex> и <tex>Y</tex> подмножества <tex>X', Y'</tex>. Пусть <tex>d = \min \{c(xy)|\ x \in X \setminus X', y \in Y'\}</tex>. Прибавим <tex> d </tex> ко всем весам ребер, инцидентных вершинам из <tex>X'</tex>. Затем отнимем <tex> d </tex> от всех весов ребер, инцидентных вершинам из <tex>Y'</tex>. Тогда: |
# Веса всех ребер графа останутся неотрицательными. | # Веса всех ребер графа останутся неотрицательными. | ||
# Веса ребер вида <tex>xy</tex>, где <tex>x \in X', y \in Y'</tex> или <tex>x \in X \backslash X', y \in Y \backslash Y'</tex>, не изменятся. | # Веса ребер вида <tex>xy</tex>, где <tex>x \in X', y \in Y'</tex> или <tex>x \in X \backslash X', y \in Y \backslash Y'</tex>, не изменятся. | ||
Строка 64: | Строка 64: | ||
# | # | ||
#* Если оно найдено, то желаемый результат достигнут, алгоритм закончен. | #* Если оно найдено, то желаемый результат достигнут, алгоритм закончен. | ||
− | #* В противном случае, покроем нули матрицы весов минимальным количеством строк и столбцов (это не что иное, как нахождение минимального | + | #* В противном случае, покроем нули матрицы весов минимальным количеством строк и столбцов (это не что иное, как [[Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах|нахождение минимального вершинного покрытия в двудольном графе]]). Теперь применим преобразование из леммы 2. Пусть множества вершин минимального вершинного покрытия из левой и правой долей — <tex> X_c </tex> и <tex> Y_c </tex> соответственно, тогда берем <tex> X' = X_c, Y' = Y \setminus Y_c </tex>. Для этого преобразования <tex> d </tex> будет минимумом по всем ребрам между <tex> X \setminus X_c </tex> и <tex> Y \setminus Y_c </tex>, то есть, ребер нулевого веса здесь нет, поэтому, после его выполнения в матрице весов появится новый нуль. После этого перейдем к шагу 1. |
== Анализ времени работы == | == Анализ времени работы == | ||
− | Поиск максимального паросочетания или минимального контролирующего множества в двудольном графе совершается за <tex> O(n^ | + | Поиск максимального паросочетания или минимального контролирующего множества в двудольном графе совершается за <tex> O(n^3) </tex> операций. При каждом повторении шагов 1-3 в матрице весов появляется новый нуль, который увеличивает размер максимального паросочетания хотя бы на 1, поэтому всего будет совершено <tex> O(n) </tex> итераций внешнего цикла. Поэтому, суммарная асимптотика работы данной версии венгерского алгоритма — <tex> O(n^4) </tex>. В книге Асанова, а также в реализации на C++ по ссылке ниже предложена оптимизация, которая позволяет улучшить время работы до <tex> O(n^3) </tex>. |
== Ссылки == | == Ссылки == |
Версия 08:57, 7 января 2012
Венгерский алгоритм — алгоритм, решающий задачу о назначениях за полиномиальное время. Оригинальная версия была придумана и разработана Х. Куном в 1955 году и имела асимптотику
, но позже Эдмонс и Карп (а также, независимо от них, Томидзава) показали, что можно улучшить ее до .Содержание
Постановка задачи
Пусть дан взвешенный полный двудольный граф
, нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер. Далее будем обозначать левую и правую доли графа за и соответственно, вес ребра — как .Некоторые полезные утверждения
Лемма: |
Если веса всех ребер графа, инцидентных какой-либо вершине, изменить на одно и то же число, то в новом графе оптимальное паросочетание будет состоять из тех же ребер, что и в старом. |
Доказательство: |
Полное паросочетание для каждой вершины содержит ровно одно ребро, инцидентное этой вершине. Указанная операция изменит на одно и то же число вес любого паросочетания. При изменении весов всех ребер, инцидентных данной вершине, на одно и то же число, выбранное ребро останется оптимальным. |
Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно этой лемме, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.
Лемма: | |||||||||
Выделим в множествах и подмножества . Пусть . Прибавим ко всем весам ребер, инцидентных вершинам из . Затем отнимем от всех весов ребер, инцидентных вершинам из . Тогда:
| |||||||||
Доказательство: | |||||||||
Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества и состоят из первых элементов множеств и соответственно (мы упорядочиваем множества по номерам вершин). Тогда вся матрица делится на 4 блока: | |||||||||
Лемма: |
Если веса всех ребер графа неотрицательны и некоторое полное паросочетание состоит из ребер нулевого веса, то оно является оптимальным. |
Доказательство: |
Действительно, паросочетание с какими-то другими весами ребер имеет больший вес и оптимальным не является. |
Алгоритм
Доказанные ранее утверждения позволяют придумать схему алгоритма, решающего задачу о назначениях: нужно найти полное паросочетание из ребер нулевого веса в графе, полученном из исходного преобразованиями, описанными в первых двух леммах.
Алгоритм, решающий задачу, работает с графом, как с матрицей весов.
- Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента. Теперь в каждом столбце есть хотя бы один нулевой элемент.
- Ищем в текущем графе полное паросочетание из ребер нулевого веса:
-
- Если оно найдено, то желаемый результат достигнут, алгоритм закончен.
- В противном случае, покроем нули матрицы весов минимальным количеством строк и столбцов (это не что иное, как нахождение минимального вершинного покрытия в двудольном графе). Теперь применим преобразование из леммы 2. Пусть множества вершин минимального вершинного покрытия из левой и правой долей — и соответственно, тогда берем . Для этого преобразования будет минимумом по всем ребрам между и , то есть, ребер нулевого веса здесь нет, поэтому, после его выполнения в матрице весов появится новый нуль. После этого перейдем к шагу 1.
Анализ времени работы
Поиск максимального паросочетания или минимального контролирующего множества в двудольном графе совершается за
операций. При каждом повторении шагов 1-3 в матрице весов появляется новый нуль, который увеличивает размер максимального паросочетания хотя бы на 1, поэтому всего будет совершено итераций внешнего цикла. Поэтому, суммарная асимптотика работы данной версии венгерского алгоритма — . В книге Асанова, а также в реализации на C++ по ссылке ниже предложена оптимизация, которая позволяет улучшить время работы до .Ссылки
Литература
- Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — 2010, 368 стр.