Обсуждение:Суммируемые функции произвольного знака — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 6: Строка 6:
 
<tex> \int\limits_B f = \int\limits_{B_1} f + \int\limits_{B_2} f \le \int\limits_{B_1} M_\varepsilon d \mu + \int\limits_{e_\varepsilon} f \le \ldots </tex>
 
<tex> \int\limits_B f = \int\limits_{B_1} f + \int\limits_{B_2} f \le \int\limits_{B_1} M_\varepsilon d \mu + \int\limits_{e_\varepsilon} f \le \ldots </tex>
 
— почему мы здесь внезапно во втором интеграле начинаем интегрирование по e_\varepsilon, а не по B_2? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 02:30, 7 января 2012 (MSK)
 
— почему мы здесь внезапно во втором интеграле начинаем интегрирование по e_\varepsilon, а не по B_2? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 02:30, 7 января 2012 (MSK)
 +
 +
== Ограниченность f в теореме ==
 +
Тут был вопрос о том, почему <tex> f </tex> ограничена, так вот, насколько я понимаю, ограниченность следует из суммируемости. Кстати, можно привести пример интегрируемой по Лебегу несуммируемой функции, достаточно взять функцию, ограниченную почти всюду. --[[Участник:Sementry|Мейнстер Д.]] 05:06, 8 января 2012 (MSK)

Версия 05:06, 8 января 2012

Пример с интегралом Дирихле

А откуда мы знаем, что [math] |\sin(x)/x| [/math] по Лебегу не суммируем? --Дмитрий Герасимов 02:11, 7 января 2012 (MSK)


Доказательство теоремы об абсолютной непрерывности

[math] \int\limits_B f = \int\limits_{B_1} f + \int\limits_{B_2} f \le \int\limits_{B_1} M_\varepsilon d \mu + \int\limits_{e_\varepsilon} f \le \ldots [/math] — почему мы здесь внезапно во втором интеграле начинаем интегрирование по e_\varepsilon, а не по B_2? --Дмитрий Герасимов 02:30, 7 января 2012 (MSK)

Ограниченность f в теореме

Тут был вопрос о том, почему [math] f [/math] ограничена, так вот, насколько я понимаю, ограниченность следует из суммируемости. Кстати, можно привести пример интегрируемой по Лебегу несуммируемой функции, достаточно взять функцию, ограниченную почти всюду. --Мейнстер Д. 05:06, 8 января 2012 (MSK)