Функциональный анализ — различия между версиями
Ulyantsev (обсуждение | вклад) |
Ulyantsev (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
Здесь я постараюсь написать теоретический минимум по второй части курса функционального анализа. | Здесь я постараюсь написать теоретический минимум по второй части курса функционального анализа. | ||
− | Большая часть материала взята из Википедии, чтобы не перебивать формулы и все такое. | + | Большая часть материала взята из Википедии, чтобы не перебивать формулы и все такое. Все остальное бралось из конспектов, лучший из них лежит на firun.ru |
Если вы читаете это, самоуничтожьтесь. | Если вы читаете это, самоуничтожьтесь. |
Версия 13:40, 19 июня 2010
Здесь я постараюсь написать теоретический минимум по второй части курса функционального анализа.
Большая часть материала взята из Википедии, чтобы не перебивать формулы и все такое. Все остальное бралось из конспектов, лучший из них лежит на firun.ru
Если вы читаете это, самоуничтожьтесь.
Да, да, функциональный анализ — раздел математики, в котором изучаются бесконечномерные пространства (в основном пространства функций) и их отображения.
Содержание
- 1 В прошлых сериях
- 2 Билеты
- 2.1 1. Сопряженный оператор и его ограниченность
- 2.2 2. Ортогональные дополнения Е и Е*
- 2.3 3. Ортогональное дополнение R(A)
- 2.4 4. Ортогональное дополнение R(A*)
- 2.5 5. Арифметика компактных операторов
- 2.6 6. О компактности А*, сепарабельность R(A)
- 2.7 7. Базис Шаудера, лемма о координатном пространстве
В прошлых сериях
- Метрическое пространство есть множество точек с метрикой :
- .
- .
- .
- Метрическое пространство называется полным, если любая фундаментальная последовательность в нём сходится к некоторому элементу этого пространства.
- Банаховым пространством называется нормированное линейное пространство полное по метрике, порождённой нормой.
- Пространство непрерывных функций — линейное нормированное пространство, элементами которого являются непрерывные на отрезке функции (обычно обозначается ). Норма в этом пространстве определяется следующим образом:
- Теорема Рисса — Фреше: Для любого непрерывного линейного функционала на Гильбертовом пространстве существует единственный вектор такой, что для любого . При этом норма линейного функционала совпадает с нормой вектора : . Теорема также означает, что пространство всех линейных ограниченных функционалов над изоморофно пространству .
- Теорема (Хан-Банах) о продолжении линейного функционала с сохранением мажоранты: любой линейный функционал , определённый на подпространстве линейного пространства и удовлетворяющий условию , где — некоторый положительно однородный функционал (определённый на всем пространстве ) то может быть продолжен на все пространство с сохранением этого условия.
- Теорема (Хан-Банах) о непрерывном продолжении линейного функционала: всякий линейный функционал , определённый на линейном многообразии линейного нормированного пространства , можно продолжить на все пространство с сохранением нормы.
- Следствие: для любых двух различных точек линейного пространства существует линейный функционал, определённый на всем пространстве и такой, что его значения в этих точках различны.
- Ядром линейного отображения называются подмножество , которое отображается в нуль: . Ядро линейного отображения образует подпространство в линейном пространстве .
- Пусть — оператор, действующий в банаховом пространстве . Число λ называется регулярным для оператора , если оператор , называемый резольвентой оператора , определён на всём и непрерывен. Множество регулярных значений оператора называется резольвентным множеством этого оператора, а дополнение резольвентного множества — спектром этого оператора.
Билеты
1. Сопряженный оператор и его ограниченность
Будем работать с
, как с банаховым пространством.Def: Пространство всех линейных функционалов на
образует линейное пространство (прошлый семестр). Это пространство называется сопряжённым к , оно обычно обозначается .Def: Пусть
— непрерывный линейный оператор действующий из банахова пространства в банахово пространство . И пусть — сопряжённые пространства. Обозначим . Если — фиксировано, то — линейный непрерывный функционал в . Таким образом, для определён линейный непрерывный функционал из , поэтому определён оператор , такой что . называется сопряжённым оператором.Th: Пусть задан линейный оператор
. Тогда норма оператора совпадает с нормой .(оператор проектирования ??)
2. Ортогональные дополнения Е и Е*
Def: Пусть
некоторое линейное множество. Тогда его ортогональное дополнение .Th: Имеют место соотношения:
; .(при доказательстве используем теорему Хана-Банаха)
3. Ортогональное дополнение R(A)
(Здесь можно написать красивый текст из конспекта про важность теорем и все такое)
Th: Пусть задан линейный оператор
, где и банаховы. Пусть также множество значений замкнуто в . Тогда .4. Ортогональное дополнение R(A*)
Th: Пусть множество значений оператора
замкнуто: . Тогда верно .
5. Арифметика компактных операторов
Def: Линейный оператор
называется компактным, если он переводит любое ограниченное множество из в относительно компактное множество в .Примером является оператор Фредгоьма:
.Установим несколько свойств:
Th: Пусть операторы
такие, что компактен, а ограничен. Тогда операторы и компактны.6. О компактности А*, сепарабельность R(A)
7. Базис Шаудера, лемма о координатном пространстве
8. Почти конечномерность компактного оператора.
9. О размерности Ker(I-A) компактного А.
10. Условие замкнутости R(A) на языке решений операторного уравнения.
11. О замкнутости R(I-A) компактного А.
12. Лемма о Ker(I-A)*n компактного А.
13. Об условии справедливости равенства R(I-A)=Е.
14. Альтернатива Фредгольма-Шаудера.
15. О спектре компактного оператора.
16. О вещественности спектра ограниченного самосопряженного оператора.
17. О характеризации спектра и резольвентного множества ограниченного самосопряженного оператора.
18. О числах m- и m+.
19. Спектральный радиус ограниченного самосопряженного оператора.
20. Теорема Гильберта-Шмидта.
21. О диагонализации компактного самосопряженного оператора и разложении его резольвенты.
22. Теорема Банаха о сжимающем отображении.
23. Дифференциал Фреше.
24. Неравенство Лагранжа.
25. Локальная теорема о неявном отображении.
26. Теорема о локальной обратимости отображения.
27. Локальная теорема о простой итерации
28. Локальная теорема о методе Ньютона-Канторовича.
29. О проекторах Шаудера.
30. Теорема Шаудера о неподвижной точке.