Суммируемые функции произвольного знака — различия между версиями
Sementry (обсуждение | вклад) м (ой)  | 
				 (→Абсолютная непрерывность)  | 
				||
| Строка 56: | Строка 56: | ||
<tex> \forall B \subset E, \mu B < \infty  </tex>;  | <tex> \forall B \subset E, \mu B < \infty  </tex>;  | ||
| − | <tex> B = B \cap E = B \cap (  | + | <tex> B = B \cap E = B \cap ({e_{\varepsilon}} \cup \overline e_{\varepsilon}) = (B \cap {e_{\varepsilon}}) \cup (B \cap \overline e_{\varepsilon}) = B_1 \cup B_2 </tex>.  | 
| − | <tex> \int\limits_B f = \int\limits_{B_1} f + \int\limits_{B_2} f \le \int\limits_{B_1} M_\varepsilon d \mu + \int\limits_{e_\varepsilon} f \le M_\varepsilon \mu B_1 + \varepsilon \le M_\varepsilon \mu B + \varepsilon</tex>  | + | <tex> \int\limits_B f = \int\limits_{B_1} f + \int\limits_{B_2} f \le \int\limits_{B_1} M_\varepsilon d \mu + \int\limits_{\overline e_\varepsilon} f \le M_\varepsilon \mu B_1 + \varepsilon \le M_\varepsilon \mu B + \varepsilon</tex>  | 
Итак <tex> \forall B \subset E, \mu B < + \infty </tex>: <tex> \int\limits_B f \le M_{\varepsilon} \mu B + \varepsilon </tex>. Потребуем, чтобы <tex> M_{\varepsilon} \mu B < \varepsilon </tex>. Тогда <tex> \mu B < \frac{\varepsilon}{M_{\varepsilon}} = \delta </tex>. Тогда получается, что для таких <tex> B: \int\limits_B f < 2 \varepsilon </tex>, если <tex> \mu B < \delta = \frac{\varepsilon}{M_{\varepsilon}} </tex>. Подставляем <tex> \frac{\varepsilon}2 = \varepsilon </tex>.  | Итак <tex> \forall B \subset E, \mu B < + \infty </tex>: <tex> \int\limits_B f \le M_{\varepsilon} \mu B + \varepsilon </tex>. Потребуем, чтобы <tex> M_{\varepsilon} \mu B < \varepsilon </tex>. Тогда <tex> \mu B < \frac{\varepsilon}{M_{\varepsilon}} = \delta </tex>. Тогда получается, что для таких <tex> B: \int\limits_B f < 2 \varepsilon </tex>, если <tex> \mu B < \delta = \frac{\varepsilon}{M_{\varepsilon}} </tex>. Подставляем <tex> \frac{\varepsilon}2 = \varepsilon </tex>.  | ||
Версия 00:34, 9 января 2012
Пусть f измерима на множестве E.
Напомним:
Интеграл распространяется так же:
Из измеримости следует, что и тоже будут измеримы. Также, они неотрицательны.
уже были определены нами ранее.
| Определение: | 
| суммируема на , если на нём суммируемы и . В этом случае, . | 
Заметим, что, по линейности . Тогда 
Так как , то из суммируемости модуля вытекает суммируемость и .
Как следствие определения, получаем, что суммируема тогда и только тогда, когда суммируема. То есть, в теории Лебега нет условно сходящихся интегралов.
Пример: интеграл Дирихле равен по Риману, но по Лебегу он не суммируем.
Так как определен линейной формулой, то на суммируемые функции произвольного знака переносятся также -аддитивность и линейность интеграла. Достаточно их написать для и сложить.
Абсолютная непрерывность
| Теорема (Абсолютная непрерывность): | 
Пусть  — суммируема на . Тогда   | 
| Доказательство: | 
| 
 , то есть, достаточно рассмотреть неотрицательные функции. — суммируема и неотрицательна. . По определению, для любого существует хорошее . Тогда , и по сигма-аддитивности, . (так как — хорошее). (так как f ограничена). ; . Итак : . Потребуем, чтобы . Тогда . Тогда получается, что для таких , если . Подставляем .  |