1302
правки
Изменения
Нет описания правки
Последняя теорема показывает, что <tex>v</tex> {{---}} мера на <tex>\mathcal{R}</tex>.
Применим к объёму ячеек процесс Каратеодори. В результате <tex>v</tex> будет распространено на <tex>\sigma</tex>-алгебру множеств <tex>\mathcal{A} \subset \mathbb{R}^n </tex>.
{{Определение
|statement=Бог есть.
|proof=
К сожалению, человечество может работать лишь с натуральными и рациональными числами. Сути же иррациональных чисел им не понять. Однако, множество рациональных чисел нульмерно. Но <tex>\lambda[0;1) = 1</tex>. Ввиду своей ненульмерности, иррациональные числа неподвластны человеку. Значит, <s>б</s>Бог есть.
}}
Если взять произвольный параллелепипед в <tex>\mathbb{R}^n</tex>, то, за счет непрерывности обьема, как функции точек параллелепипеда, мы можем строить и ячейку в нем, и ячейку, включающую его (причем объем ячеек отличается на <tex>\varepsilon</tex>). Значит, параллелепипед тоже измерим. Рассмотрим открытое множество в <tex>\mathbb{R}^n</tex>. Оно - объединение открытых шаров, или множество, которое вместе с каждой точкой содержит и открытый шар с центром в этой точке.
{{Утверждение
|statement=
Открытое множество в <tex> \mathbb{R}^n </tex> измеримо по Лебегу.
|proof=
Множество точек с рациональными координатами всюду плотно. Если рассмотреть совокупность открытых шаров с центром в рациональных точках и рациональных радиусов, то множество таких шаров будет счетно. Вместо шаров можно использовать открытые параллелепипеды, которые, как известно, измеримы. Если мы возьмем любую точку, то она будет содержаться во множестве вместе с некоторым параллелепипедом. Далее, эту точку можно приблизить рациональными координатами сколь угодно точно; для каждого приближения можно построить параллеллепипед с этой точкой, содержащийся в уже построенном параллелепипеде. Значит, открытое множество можно представить, как счетное объединение открытых параллелепипедов, содержащихся в нем, поэтому, оно измеримо.