Лемма о дедукции, полнота исчисления высказываний — различия между версиями
Phil (обсуждение | вклад) |
Phil (обсуждение | вклад) м |
||
Строка 14: | Строка 14: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть справедливо <tex>\Gamma \vdash \alpha \rightarrow \beta</tex>. Тогда справедливо <tex>\Gamma | + | Пусть справедливо <tex>\Gamma \vdash \alpha \rightarrow \beta</tex>. Тогда справедливо <tex>\Gamma \cup \{\alpha\} \vdash \beta</tex> |
|proof= | |proof= | ||
Возьмем <tex>\delta_1, ..., \delta_m</tex> --- вывод формулы <tex>\alpha \rightarrow \beta</tex>. В ней <tex>\delta_m = \alpha \rightarrow \beta</tex>. Добавим <tex>\delta_{m+1} = \alpha</tex> --- это добавленная аксиома, и <tex>\delta_{m+2} = \beta</tex>, получим вывод <tex>\beta</tex>. | Возьмем <tex>\delta_1, ..., \delta_m</tex> --- вывод формулы <tex>\alpha \rightarrow \beta</tex>. В ней <tex>\delta_m = \alpha \rightarrow \beta</tex>. Добавим <tex>\delta_{m+1} = \alpha</tex> --- это добавленная аксиома, и <tex>\delta_{m+2} = \beta</tex>, получим вывод <tex>\beta</tex>. | ||
}} | }} |
Версия 21:34, 12 января 2012
Теорема о дедукции
Будем обозначать буквами
списки формул (возможно, пустые).
Определение: |
Пусть | - некоторые список высказываний, - некоторое высказывание в исчислении . Тогда будем говорить, что выводится из (запись: ), если существует доказательство в исчислении , где - это с добавленными формулами из . Элементы называются допущениями, предположениями, или гипотезами.
Замечание: в этом определении появляются дополнительные предположения, поэтому речь идет именно о выводе, а не о доказательстве. Очевидно, что, если , то соответствует .
Теорема: |
Пусть справедливо . Тогда справедливо |
Доказательство: |
Возьмем | --- вывод формулы . В ней . Добавим --- это добавленная аксиома, и , получим вывод .