Цепные дроби как приближение к числу — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <math>\alpha</math> разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству:
 
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <math>\alpha</math> разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству:
 
<math>~|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i * Q_{i+1}} < \frac{1}{Q_i^2}</math>
 
<math>~|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i * Q_{i+1}} < \frac{1}{Q_i^2}</math>
 +
==Теорема 1==
 +
==Теорема 2==
 +
==Теорема 3==
 +
==Теорема 4==

Версия 19:23, 20 июня 2010

Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число [math]\alpha[/math] разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству: [math]~|\alpha-\frac{P_i}{Q_i}| \lt \frac{1}{Q_i * Q_{i+1}} \lt \frac{1}{Q_i^2}[/math]

Теорема 1

Теорема 2

Теорема 3

Теорема 4