Регулярная марковская цепь — различия между версиями
Yurik (обсуждение | вклад) |
Yurik (обсуждение | вклад) |
||
Строка 11: | Строка 11: | ||
|statement=Пусть <tex>P_{[r\times r]}</tex> — матрица перехода регулярной цепи, <tex>\varepsilon</tex> — минимальный элемент этой матрицы. Пусть х — произвольный r-мерный вектор-столбец, имеющий максимальный элемент <tex>M_0</tex> и минимальный <tex>m_0</tex>. Пусть <tex>M_1</tex> и <tex>m_1</tex> - максимальный и минимальный элементы <tex>Px</tex>. <br> | |statement=Пусть <tex>P_{[r\times r]}</tex> — матрица перехода регулярной цепи, <tex>\varepsilon</tex> — минимальный элемент этой матрицы. Пусть х — произвольный r-мерный вектор-столбец, имеющий максимальный элемент <tex>M_0</tex> и минимальный <tex>m_0</tex>. Пусть <tex>M_1</tex> и <tex>m_1</tex> - максимальный и минимальный элементы <tex>Px</tex>. <br> | ||
Тогда <tex>M_1 \leqslant M_0</tex>, <tex>m_1 \geqslant m_0</tex> и <tex>M_1 - m_1 \leqslant (1 - 2\varepsilon)(M_0 - m_0)</tex> | Тогда <tex>M_1 \leqslant M_0</tex>, <tex>m_1 \geqslant m_0</tex> и <tex>M_1 - m_1 \leqslant (1 - 2\varepsilon)(M_0 - m_0)</tex> | ||
− | + | |proof= | |
− | |||
− | |||
− | |||
Пусть х' - вектор, полученный из х заменой всех элементов, кроме <tex>m_0</tex> на <tex>M_0</tex>. Тогда <tex>x \leqslant x'</tex>. Каждый элемент <tex>Px'</tex> имеет вид | Пусть х' - вектор, полученный из х заменой всех элементов, кроме <tex>m_0</tex> на <tex>M_0</tex>. Тогда <tex>x \leqslant x'</tex>. Каждый элемент <tex>Px'</tex> имеет вид | ||
Строка 22: | Строка 19: | ||
Складывая эти два неравенства, получаем <tex>M_1 - m_1 \leqslant M_0 - m_0 - 2\varepsilon (M_0 - m_0) = (1 - 2\varepsilon )(M_0 - m_0)</tex>, ч.т.д. | Складывая эти два неравенства, получаем <tex>M_1 - m_1 \leqslant M_0 - m_0 - 2\varepsilon (M_0 - m_0) = (1 - 2\varepsilon )(M_0 - m_0)</tex>, ч.т.д. | ||
+ | }} | ||
== Основная теорема регулярных цепей == | == Основная теорема регулярных цепей == | ||
Строка 28: | Строка 26: | ||
|statement=Пусть Р - регулярная переходная матрица. Тогда:<br> | |statement=Пусть Р - регулярная переходная матрица. Тогда:<br> | ||
<tex>\exists A: \displaystyle \lim_{n \to \infty}P^n = A</tex>;<br> | <tex>\exists A: \displaystyle \lim_{n \to \infty}P^n = A</tex>;<br> | ||
− | каждая строка А представляет собой один и тот же вероятностный вектор <tex>\alpha = \{a_1, a_2, \ldots, | + | каждая строка А представляет собой один и тот же вероятностный вектор <tex>\alpha = \{a_1, a_2, \ldots, a_r \}</tex> |
− | + | |proof= | |
− | |||
− | |||
− | |||
Рассмотрим вектор-столбец <tex>\rho _j</tex>, у которого j-й элемент равен 1, а все остальные равны 0. Пусть <tex>M_n</tex> и <tex>m_n</tex> - минимальный и максимальный элементы столбца <tex>P^n \rho _j</tex>. | Рассмотрим вектор-столбец <tex>\rho _j</tex>, у которого j-й элемент равен 1, а все остальные равны 0. Пусть <tex>M_n</tex> и <tex>m_n</tex> - минимальный и максимальный элементы столбца <tex>P^n \rho _j</tex>. | ||
Так как <tex>P^n \rho _j = P \cdot P^{n-1} \rho _j</tex>, то из леммы следует, что <tex>M_1 \geqslant M_2 \geqslant \ldots</tex> и <tex>m_1 \leqslant m_2 \leqslant \ldots</tex> и | Так как <tex>P^n \rho _j = P \cdot P^{n-1} \rho _j</tex>, то из леммы следует, что <tex>M_1 \geqslant M_2 \geqslant \ldots</tex> и <tex>m_1 \leqslant m_2 \leqslant \ldots</tex> и | ||
Строка 40: | Строка 35: | ||
<tex>d_n \leqslant (1 - 2 \varepsilon )^n d_0 = (1 - 2 \varepsilon)^n \to 0</tex>. | <tex>d_n \leqslant (1 - 2 \varepsilon )^n d_0 = (1 - 2 \varepsilon)^n \to 0</tex>. | ||
− | Значит <tex>P^n \rho _j</tex> сходится к вектору, все элементы которого равны между собой. Пусть <tex>a_j</tex> - их общее значение. Тогда <tex>0 \leqslant a_j \leqslant 1</tex>. Заметим, что <tex>P^n \rho _j</tex> - j-тый столбец матрицы <tex>P^n</tex>. Рассмотрим все <tex>\rho _j</tex> для <tex>j = 1, 2, \ldots</tex>. Тогда <tex>P^n</tex> сходится к матрице А, у которой по строкам стоит один и тот же вектор <tex>\alpha = \{a_1, a_2, \ldots, | + | Значит <tex>P^n \rho _j</tex> сходится к вектору, все элементы которого равны между собой. Пусть <tex>a_j</tex> - их общее значение. Тогда <tex>0 \leqslant a_j \leqslant 1</tex>. Заметим, что <tex>P^n \rho _j</tex> - j-тый столбец матрицы <tex>P^n</tex>. Рассмотрим все <tex>\rho _j</tex> для <tex>j = 1, 2, \ldots</tex>. Тогда <tex>P^n</tex> сходится к матрице А, у которой по строкам стоит один и тот же вектор <tex>\alpha = \{a_1, a_2, \ldots, a_r \}</tex>. |
Так как в каждой матрице <tex>P^n</tex> сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана. | Так как в каждой матрице <tex>P^n</tex> сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана. | ||
− | + | }} | |
{{Определение | {{Определение | ||
− | |||
− | |||
|definition=Матрица А называется ''предельной матрицей'', вектор <tex>\alpha</tex> - ''предельным распределением''. | |definition=Матрица А называется ''предельной матрицей'', вектор <tex>\alpha</tex> - ''предельным распределением''. | ||
}} | }} | ||
Строка 59: | Строка 52: | ||
* <tex>\alpha</tex> - единственный вектор, для которого <tex>\alpha P = \alpha</tex> | * <tex>\alpha</tex> - единственный вектор, для которого <tex>\alpha P = \alpha</tex> | ||
* <tex>AP = PA = A</tex> | * <tex>AP = PA = A</tex> | ||
− | + | |proof= | |
− | |||
− | |||
− | |||
Пусть <tex>\xi</tex> - вектор-столбец, состоящий из единиц. | Пусть <tex>\xi</tex> - вектор-столбец, состоящий из единиц. | ||
Строка 68: | Строка 58: | ||
* Пусть <tex>\beta : \ \ \beta P = \beta</tex>. Тогда <tex>\forall n \ \beta P^n = \beta \Rightarrow \beta = \beta A = \alpha</tex>. Второй пункт доказан. | * Пусть <tex>\beta : \ \ \beta P = \beta</tex>. Тогда <tex>\forall n \ \beta P^n = \beta \Rightarrow \beta = \beta A = \alpha</tex>. Второй пункт доказан. | ||
* <tex>\displaystyle \lim_{n \to \infty} P^n = A \Leftrightarrow P \cdot \lim_{n \to \infty} P^n = A \Leftrightarrow \lim_{n \to \infty} P^n \cdot P = A</tex>. Третий пункт доказан. | * <tex>\displaystyle \lim_{n \to \infty} P^n = A \Leftrightarrow P \cdot \lim_{n \to \infty} P^n = A \Leftrightarrow \lim_{n \to \infty} P^n \cdot P = A</tex>. Третий пункт доказан. | ||
− | + | }} | |
Таким образом у регулярных цепей есть свойство: через достаточно большое количество ходов будет существовать постоянная вероятность нахождения цепи в состоянии <tex>s_i</tex>, и эта вероятность не зависит от началоного распределения, а зависит только от матрицы P. | Таким образом у регулярных цепей есть свойство: через достаточно большое количество ходов будет существовать постоянная вероятность нахождения цепи в состоянии <tex>s_i</tex>, и эта вероятность не зависит от началоного распределения, а зависит только от матрицы P. |
Версия 08:58, 13 января 2012
Содержание
Регулярная цепь Маркова
Определение: |
Марковская цепь называется регулярной (нормальной), если в матрице перехода P | .
В регулярной Марковской цепи из любого состояния можно попасть в любое другое за некоторое число ходов.
Лемма
Лемма: |
Пусть — матрица перехода регулярной цепи, — минимальный элемент этой матрицы. Пусть х — произвольный r-мерный вектор-столбец, имеющий максимальный элемент и минимальный . Пусть и - максимальный и минимальный элементы . Тогда , и |
Доказательство: |
Пусть х' - вектор, полученный из х заменой всех элементов, кроме на . Тогда . Каждый элемент имеет вид, где а - элемент P, который домножается на , причем . Поэтому наше выражение не превосходит . Отсюда и из неравенства получается: . Применяя те же рассуждения для вектора -х, получим: Складывая эти два неравенства, получаем . , ч.т.д. |
Основная теорема регулярных цепей
Теорема: |
Пусть Р - регулярная переходная матрица. Тогда:
|
Доказательство: |
Рассмотрим вектор-столбец , у которого j-й элемент равен 1, а все остальные равны 0. Пусть и - минимальный и максимальный элементы столбца . Так как , то из леммы следует, что и и. Пусть , тогда . Значит Так как в каждой матрице сходится к вектору, все элементы которого равны между собой. Пусть - их общее значение. Тогда . Заметим, что - j-тый столбец матрицы . Рассмотрим все для . Тогда сходится к матрице А, у которой по строкам стоит один и тот же вектор . сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана. |
Определение: |
Матрица А называется предельной матрицей, вектор | - предельным распределением.
Следствие из теоремы
Теорема: |
Пусть - объекты из предыдущей теоремы.
Тогда справедливы факты:
|
Доказательство: |
Пусть - вектор-столбец, состоящий из единиц.
|
Таким образом у регулярных цепей есть свойство: через достаточно большое количество ходов будет существовать постоянная вероятность нахождения цепи в состоянии
, и эта вероятность не зависит от началоного распределения, а зависит только от матрицы P.Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова", стр 93