Регулярная марковская цепь — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Основная теорема регулярных цепей)
Строка 1: Строка 1:
 
== Регулярная цепь Маркова ==
 
== Регулярная цепь Маркова ==
 
{{Определение
 
{{Определение
|definition=Марковская цепь называется регулярной (нормальной), если в матрице перехода P  <tex>\forall i,j \ \ p_{ij} \neq 0</tex>.
+
|definition=[[Марковская цепь|Марковская цепь]] называется регулярной (нормальной), если в матрице перехода P  <tex>\forall i,j \ \ p_{ij} \neq 0</tex>.
 
}}
 
}}
  
Строка 24: Строка 24:
  
 
{{Теорема
 
{{Теорема
|statement=Регулярная марковская цепь эргодична. Другими словами:<br>
+
|statement=Регулярная марковская цепь [[Эргодическая марковская цепь|эргодична]]. Другими словами:<br>
 
Пусть Р - регулярная переходная матрица. Тогда:<br>
 
Пусть Р - регулярная переходная матрица. Тогда:<br>
 
<tex>\exists A: \displaystyle \lim_{n \to \infty}P^n = A</tex>;<br>
 
<tex>\exists A: \displaystyle \lim_{n \to \infty}P^n = A</tex>;<br>
 
каждая строка А представляет собой один и тот же вероятностный вектор <tex>\alpha = \{a_1, a_2, \ldots, a_r \}</tex>
 
каждая строка А представляет собой один и тот же вероятностный вектор <tex>\alpha = \{a_1, a_2, \ldots, a_r \}</tex>
 
|proof=
 
|proof=
Рассмотрим вектор-столбец <tex>\rho _j</tex>, у которого j-й элемент равен 1, а все остальные равны 0. Пусть <tex>M_n</tex> и <tex>m_n</tex> - минимальный и максимальный элементы столбца <tex>P^n \rho _j</tex>.  
+
Рассмотрим вектор-столбец <tex>e_j</tex>, у которого j-й элемент равен 1, а все остальные равны 0. Пусть <tex>M_n</tex> и <tex>m_n</tex> - минимальный и максимальный элементы столбца <tex>P^n e_j</tex>.  
Так как <tex>P^n \rho _j = P \cdot P^{n-1} \rho _j</tex>, то из леммы следует, что <tex>M_1 \geqslant M_2 \geqslant \ldots</tex> и <tex>m_1 \leqslant m_2 \leqslant \ldots</tex> и  
+
Так как <tex>P^n e_j = P \cdot P^{n-1} e_j</tex>, то из леммы следует, что <tex>M_1 \geqslant M_2 \geqslant \ldots</tex> и <tex>m_1 \leqslant m_2 \leqslant \ldots</tex> и  
  
 
<tex>M_n - m_n \leqslant (1 - 2\varepsilon )(M_{n-1} - m_{n-1})</tex>. Пусть <tex>d_n = M_n - m_n</tex>, тогда
 
<tex>M_n - m_n \leqslant (1 - 2\varepsilon )(M_{n-1} - m_{n-1})</tex>. Пусть <tex>d_n = M_n - m_n</tex>, тогда
Строка 36: Строка 36:
 
<tex>d_n \leqslant (1 - 2 \varepsilon )^n d_0 = (1 - 2 \varepsilon)^n \to 0</tex>.
 
<tex>d_n \leqslant (1 - 2 \varepsilon )^n d_0 = (1 - 2 \varepsilon)^n \to 0</tex>.
  
Значит <tex>P^n \rho _j</tex> сходится к вектору, все элементы которого равны между собой. Пусть <tex>a_j</tex> - их общее значение. Тогда <tex>0 \leqslant a_j \leqslant 1</tex>. Заметим, что <tex>P^n \rho _j</tex> - j-тый столбец матрицы <tex>P^n</tex>. Рассмотрим все <tex>\rho _j</tex> для <tex>j = 1, 2, \ldots</tex>. Тогда <tex>P^n</tex> сходится к матрице А, у которой по строкам стоит один и тот же вектор <tex>\alpha = \{a_1, a_2, \ldots, a_r \}</tex>.
+
Значит <tex>P^n e_j</tex> сходится к вектору, все элементы которого равны между собой. Пусть <tex>a_j</tex> - их общее значение. Тогда <tex>0 \leqslant a_j \leqslant 1</tex>. Заметим, что <tex>P^n e_j</tex> - j-тый столбец матрицы <tex>P^n</tex>. Рассмотрим все <tex>e_j</tex> для <tex>j = 1, 2, \ldots</tex>. Тогда <tex>P^n</tex> сходится к матрице А, у которой по строкам стоит один и тот же вектор <tex>\alpha = \{a_1, a_2, \ldots, a_r \}</tex>.
 
Так как в каждой матрице <tex>P^n</tex> сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана.
 
Так как в каждой матрице <tex>P^n</tex> сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана.
 
}}
 
}}
Строка 60: Строка 60:
 
}}
 
}}
  
Таким образом у регулярных цепей есть свойство: через достаточно большое количество ходов будет существовать постоянная вероятность нахождения цепи в состоянии <tex>s_i</tex>, и эта вероятность не зависит от началоного распределения, а зависит только от матрицы P.
+
Таким образом у регулярных цепей есть свойство: через достаточно большое количество ходов будет существовать постоянная вероятность нахождения цепи в состоянии <tex>s_i</tex>, и эта вероятность не зависит от начального распределения, а зависит только от матрицы P.
 +
 
 +
== Пример ==
 +
[[File:Temp.gif|thumb|250px|Пример регулярной цепи]]
 +
Самый очевидный пример регулярной цепи - честная монета. Матрица переходов будет выглядеть так:
 +
 
 +
<tex>
 +
P = \begin{bmatrix}
 +
0.5 & 0.5 \\
 +
0.5 & 0.5
 +
\end{bmatrix}
 +
</tex>
 +
 
 +
Тогда <tex>\forall n \ \ P^n = P = A,\  \alpha = \{ 0.5, 0.5 \}</tex>
 +
То есть через достаточно большое количество ходов наша система будет ''равновероятно'' находится как в состоянии "1", так и в состоянии "0", независимо от начального распределения.
  
 
== Литература ==
 
== Литература ==

Версия 02:27, 14 января 2012

Регулярная цепь Маркова

Определение:
Марковская цепь называется регулярной (нормальной), если в матрице перехода P [math]\forall i,j \ \ p_{ij} \neq 0[/math].


В регулярной Марковской цепи из любого состояния можно попасть в любое другое за некоторое число ходов.

Лемма

Лемма:
Пусть [math]P_{[r\times r]}[/math] — матрица перехода регулярной цепи, [math]\varepsilon[/math] — минимальный элемент этой матрицы. Пусть х — произвольный r-мерный вектор-столбец, имеющий максимальный элемент [math]M_0[/math] и минимальный [math]m_0[/math]. Пусть [math]M_1[/math] и [math]m_1[/math] - максимальный и минимальный элементы [math]Px[/math].
Тогда [math]M_1 \leqslant M_0[/math], [math]m_1 \geqslant m_0[/math] и [math]M_1 - m_1 \leqslant (1 - 2\varepsilon)(M_0 - m_0)[/math]
Доказательство:
[math]\triangleright[/math]

Пусть х' - вектор, полученный из х заменой всех элементов, кроме [math]m_0[/math] на [math]M_0[/math]. Тогда [math]x \leqslant x'[/math]. Каждый элемент [math]Px'[/math] имеет вид

[math]am_0 + (1 - a)M_0 = M_0 - a(M_0 - m_0)[/math], где а - элемент P, который домножается на [math]m_0[/math], причем [math]a \geqslant \varepsilon[/math]. Поэтому наше выражение не превосходит [math]M_0 - \varepsilon(M_0 - m_0)[/math]. Отсюда и из неравенства [math]x \leqslant x'[/math] получается: [math]M_1 \leqslant M_0 - \varepsilon (M_0 - m_0)[/math].

Применяя те же рассуждения для вектора -х, получим: [math]-m_1 \leqslant -m_0 - \varepsilon (-m_0 + M_0)[/math].

Складывая эти два неравенства, получаем [math]M_1 - m_1 \leqslant M_0 - m_0 - 2\varepsilon (M_0 - m_0) = (1 - 2\varepsilon )(M_0 - m_0)[/math], ч.т.д.
[math]\triangleleft[/math]

Основная теорема регулярных цепей (Эргодическая теорема)

Теорема:
Регулярная марковская цепь эргодична. Другими словами:

Пусть Р - регулярная переходная матрица. Тогда:
[math]\exists A: \displaystyle \lim_{n \to \infty}P^n = A[/math];

каждая строка А представляет собой один и тот же вероятностный вектор [math]\alpha = \{a_1, a_2, \ldots, a_r \}[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим вектор-столбец [math]e_j[/math], у которого j-й элемент равен 1, а все остальные равны 0. Пусть [math]M_n[/math] и [math]m_n[/math] - минимальный и максимальный элементы столбца [math]P^n e_j[/math]. Так как [math]P^n e_j = P \cdot P^{n-1} e_j[/math], то из леммы следует, что [math]M_1 \geqslant M_2 \geqslant \ldots[/math] и [math]m_1 \leqslant m_2 \leqslant \ldots[/math] и

[math]M_n - m_n \leqslant (1 - 2\varepsilon )(M_{n-1} - m_{n-1})[/math]. Пусть [math]d_n = M_n - m_n[/math], тогда

[math]d_n \leqslant (1 - 2 \varepsilon )^n d_0 = (1 - 2 \varepsilon)^n \to 0[/math].

Значит [math]P^n e_j[/math] сходится к вектору, все элементы которого равны между собой. Пусть [math]a_j[/math] - их общее значение. Тогда [math]0 \leqslant a_j \leqslant 1[/math]. Заметим, что [math]P^n e_j[/math] - j-тый столбец матрицы [math]P^n[/math]. Рассмотрим все [math]e_j[/math] для [math]j = 1, 2, \ldots[/math]. Тогда [math]P^n[/math] сходится к матрице А, у которой по строкам стоит один и тот же вектор [math]\alpha = \{a_1, a_2, \ldots, a_r \}[/math].

Так как в каждой матрице [math]P^n[/math] сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана.
[math]\triangleleft[/math]


Определение:
Матрица А называется предельной матрицей, вектор [math]\alpha[/math] - предельным распределением.


Следствия

Теорема:
Пусть [math]P, A, \alpha[/math] - объекты из предыдущей теоремы.

Тогда справедливы факты:

  • для любого вероятностного вектора [math]\pi \ \ \ \displaystyle \lim_{n \to \infty} \pi P^n = \alpha[/math]
  • [math]\alpha[/math] - единственный вектор, для которого [math]\alpha P = \alpha[/math]
  • [math]AP = PA = A[/math]
Доказательство:
[math]\triangleright[/math]

Пусть [math]\xi[/math] - вектор-столбец, состоящий из единиц.

  • [math]\pi[/math] - вероятностный вектор, значит [math]\pi \xi = 1[/math](сумма его элементов равна 1), значит [math]\pi A = \pi \xi \alpha = \alpha[/math]. Но [math]\displaystyle \lim_{n \to \infty} \pi P^n = \pi A = \alpha[/math] - первый пункт доказан.
  • Пусть [math]\beta : \ \ \beta P = \beta[/math]. Тогда [math]\forall n \ \beta P^n = \beta \Rightarrow \beta = \beta A = \alpha[/math]. Второй пункт доказан.
  • [math]\displaystyle \lim_{n \to \infty} P^n = A \Leftrightarrow P \cdot \lim_{n \to \infty} P^n = A \Leftrightarrow \lim_{n \to \infty} P^n \cdot P = A[/math]. Третий пункт доказан.
[math]\triangleleft[/math]

Таким образом у регулярных цепей есть свойство: через достаточно большое количество ходов будет существовать постоянная вероятность нахождения цепи в состоянии [math]s_i[/math], и эта вероятность не зависит от начального распределения, а зависит только от матрицы P.

Пример

Пример регулярной цепи

Самый очевидный пример регулярной цепи - честная монета. Матрица переходов будет выглядеть так:

[math] P = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} [/math]

Тогда [math]\forall n \ \ P^n = P = A,\ \alpha = \{ 0.5, 0.5 \}[/math] То есть через достаточно большое количество ходов наша система будет равновероятно находится как в состоянии "1", так и в состоянии "0", независимо от начального распределения.

Литература

Дж. Кемени, Дж. Снелл "Конечные цепи Маркова", стр 93