Задача коммивояжера, ДП по подмножествам — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Динамическое программирование по подмножествам (по маскам))
(Динамическое программирование по подмножествам (по маскам))
Строка 25: Строка 25:
 
*Для остальных состояний (<tex>i \ne 0</tex> или <tex>mask \ne 0</tex>) перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат.
 
*Для остальных состояний (<tex>i \ne 0</tex> или <tex>mask \ne 0</tex>) перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат.
 
*Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>).
 
*Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>).
 
То есть, <tex>d[i][mask]</tex> принимает значения:
 
 
<tex> d[i][mask] =
 
\begin{cases}
 
0, & \\
 
\min\limits_{j:\text{ }mask_j=1,\text{ }(i, j) \in E} \begin{Bmatrix} w(i, j) + d[j][mask - 2^j] \end{Bmatrix}, & \\
 
\infty, &
 
\end{cases}
 
</tex>
 
  
 
Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени.
 
Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени.

Версия 02:19, 15 января 2012

Задача о коммивояжере (англ. Travelling - salesman problem, TSP) - это задача, в которой коммивояжер должен посетить [math] N [/math] городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?

Варианты решения

В теории алгоритмов NP-полная (NPC, NP-complete) задача — задача из класса NP, к которой можно свести любую другую задачу из класса NP за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «самых сложных» задач в классе NP; и если для какой-то из них будет найден «быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро». Cтатус NP-полных задач пока что неизвестен. Для их решения до настоящего времени не разработано алгоритмов с полиномиальным временем работы, но и не доказано, что для какой-то из них алгоритмов не существует. Этот так называемый вопрос P[math]\neq[/math]NP с момента своей постановки в 1971 году стал одним из самых трудных в теории вычислительных систем.

Так вот задача о коммивояжере относится к классу NP-полных задач. Поэтому, рассмотрим два варианта решения с экспоненциальным временем работы.

Перебор перестановок

Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все [math] N! [/math] всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших [math]N[/math]. Сложность алгоритма [math]O({N!}\times{N})[/math].

Динамическое программирование по подмножествам (по маскам)

Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.

Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе [math] G=(V,E)[/math] [math] N [/math] вершин, пронумерованных от [math]0[/math] до [math]N-1[/math] и каждое ребро [math](i, j) \in E [/math] имеет некоторый вес [math] w(i,j)[/math]. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.

Зафиксируем начальную вершину [math]s[/math] и будем искать гамильтонов цикл наименьшей стоимости - путь от [math]s[/math] до [math]s[/math], проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор [math]s[/math] не имеет значения. Поэтому будем считать [math]s = 0 [/math].

Подмножества вершин будем кодировать битовыми векторами, обозначим [math]mask_i[/math] значение [math]i[/math]-ого бита в векторе [math]mask[/math].

Обозначим [math]d[i][mask][/math] как наименьшую стоимость пути из вершины [math]i[/math] в вершину [math]0[/math], проходящую (не считая вершины [math]i[/math]) единожды по всем тем и только тем вершинам [math]j[/math], для которых [math]mask_j = 1[/math] (т.е. [math]d[i][mask][/math] уже найденный оптимальный путь от [math]i[/math]-ой вершины до [math]0[/math]-ой, проходящий через те вершины, где [math]mask_j=1[/math]. Если [math]mask_j=0[/math],то эти вершины еще не посещены).

  • Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен [math]0[/math] (т.е. [math]i = 0[/math] и [math]mask = 0[/math]).
  • Для остальных состояний ([math]i \ne 0[/math] или [math]mask \ne 0[/math]) перебираем все возможные переходы в [math]i[/math]-ую вершину из любой посещенной ранее и выбираем минимальный результат.
  • Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как [math]\infty[/math]).

Стоимостью минимального гамильтонова цикла в исходном графе будет значение [math] d[0][2^n-1][/math] - стоимость пути из [math]0[/math]-й вершины в [math]0[/math]-ю, при необходимости посетить все вершины. Данное решение требует [math]O({2^n}\times{n})[/math] памяти и [math]O({2^n}\times{n^2})[/math] времени.

Для того, чтобы восстановить сам путь, воспользуемся соотношением [math] d[i][mask] = w(i, j) + d[j][mask - 2^j] [/math], которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния [math] i = 0 [/math], [math] mask = 2^n - 1[/math], найдем вершину [math]j[/math], для которой выполняется указанное соотношение, добавим [math]j[/math] в ответ, пересчитаем текущее состояние как [math]i = j[/math], [math] mask = mask - 2^j [/math]. Процесс заканчивается в состоянии [math]i = 0[/math], [math] mask = 0 [/math].

Реализация

 //Все переменные используются из описания алгоритма, inf = бесконечность
 d[0][0] = 0;
 for i = 0 to n - 1
   for mask = 0 to mask = 2 ** n - 1
     for j = 0 to n - 1
       if j-ий бит mask == 1
         if w(i, j) существует
           d[i][mask] = min(d[i][mask], d[j][mask - 2 ** n] + w(i, j);
         else
           d[i][mask] = inf;
 print d[0][2 ** n - 1];

Ссылки

Литература

  • Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4