Цепные дроби как приближение к числу — различия между версиями
(→Доказательство) |
(→Доказательство) |
||
Строка 11: | Строка 11: | ||
Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{\sqrt{5}Q^2}</math> | Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{\sqrt{5}Q^2}</math> | ||
===Доказательство=== | ===Доказательство=== | ||
− | + | Рассмотрим три последующие подходящие дроби к <math>\alpha : \frac{P_k}{Q_k}, \frac{P_{k+1}}{Q_{k+1}} </math> и <math> \frac{P_{k+2}}{Q_{k+2}}</math>. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: <math>~|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{\sqrt{5}Q_k^2}, ~|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{\sqrt{5}Q_{k+1}^2}, ~|\alpha-\frac{P_{k+2}}{Q_{k+2}}|\geqslant\frac{1}{\sqrt{5}Q_{k+2}^2}</math>. | |
− | + | Так как <math>\frac{P_k}{Q_k}</math> и <math>\frac{P_{k+1}}{Q_{k+1}}</math> расположены по разные стороны от <math>\alpha</math>, то при нечётном <math>k</math> имеем <math>\frac{P_k}{Q_k}+\frac{1}{\sqrt{5}Q_k^2}\leqslant\alpha\leqslant\frac{P_{k+1}}{Q_{k+1}}-\frac{1}{\sqrt{5}Q_{k+1}^2} </math>, а при чётном <math> k </math> - <math>\frac{P_{k+1}}{Q_{k+1}}+\frac{1}{\sqrt{5}Q_{k+1}^2}\leqslant\alpha\leqslant\frac{P_k}{Q_k}-\frac{1}{\sqrt{5}Q_k^2}</math>. | |
− | + | Из последних двух неравенств следует, что <math>\frac{1}{\sqrt{5}}(\frac{1}{Q_k^2}+\frac{1}{Q_{k+1}^2})\leqslant~|\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}</math> | |
==Теорема 4== | ==Теорема 4== |
Версия 09:59, 21 июня 2010
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число
разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству:Теорема 1
Теорема 2
Для любого иррационального числа
существует бесконечное число дробей таких, чтоДоказательство
Рассмотрим две последующие подходящие дроби к
и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: . Отсюда . Но поскольку лежит между и , то , вследствие чего . Следовательно , что невозможно. Мы пришли к противоречию. Поэтому по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения k, получим бесконечное множество дробей, удовлетворяющих условию теоремы. q.e.d.Теорема 3
Для любого иррационального числа
существует бесконечное число дробей таких, чтоДоказательство
Рассмотрим три последующие подходящие дроби к
и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: . Так как и расположены по разные стороны от , то при нечётном имеем , а при чётном - . Из последних двух неравенств следует, что