Матричное представление перестановок — различия между версиями
Darkraven (обсуждение | вклад) (→Свойства) |
|||
Строка 62: | Строка 62: | ||
<center><tex>P^T P = P P^T = E</tex></center> где <tex>E</tex> - единичная матрица. | <center><tex>P^T P = P P^T = E</tex></center> где <tex>E</tex> - единичная матрица. | ||
|proof= | |proof= | ||
− | + | Также следует из того, что перестановки являются группой.}} | |
{{Утверждение|statement=Произведение матриц перестановок есть матрица перестановок. | {{Утверждение|statement=Произведение матриц перестановок есть матрица перестановок. |
Версия 20:57, 15 января 2012
Содержание
Определение
Определение: |
Матрица перестановки — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
Определение: |
Если матрица перестановок | получена из единичной матрицы перестановкой местами двух строк (или двух столбцов), то такая матрица называется элементарной матрицей перестановок.
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка
порядка :Соответствующей матрицей перестановки является матрица
вида:- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
Утверждение: |
Для любых двух перестановок их матрицы обладают свойством:
|
Рассмотрим эта сумма может быть равна нулю или единице, причем единице в том случае, если в - той строчке на - том столбце матрицы и в - той строчке на - том столбце матрицы стоят единицы. значит, что в перестановке на - том месте стоит элемент , и означает что в перестановке на - том месте стоит элемент , а означает что в перестановке, которой соответствует эта матрица, так же на - том месте стоит элемент . Но также известно, что если умножить перестановку , где на - том месте стоит элемент , на перестановку , где на - том месте стоит элемент , то в полученной перестановке на - том месте будет стоять элемент . В результате если , то . Аналогичные рассуждения можно провести когда , и также получим, что . Поэтому для любых справедливо , а раз такое равентсво выполняется, то . |
Утверждение: |
Для любой матрицы перестановок существует обратная:
|
Так как перестановки являются группой, то для любой перестановки существует обратная. Так как любая перестановка имеет свою матрицу перестановки, то утверждение о существовании обратной матрицы перестановки также справедливо. |
Утверждение: |
Для любой матрицы перестановок справедливо:
|
Также следует из того, что перестановки являются группой. |
Утверждение: |
Произведение матриц перестановок есть матрица перестановок. |
Произведение перестановок есть перестановка, значит и произведение матриц перестановок есть матрица перестановок. |
Утверждение: |
Умножение произвольной матрицы на перестановочную соответственно меняет местами её столбцы.
Умножение перестановочной матрицы на произвольную меняет местами строки в . |
Рассмотрим произвольную матрицу Доказательство второго утверждения аналогично. и матрицу перестановки : возьмем - тую строчку матрицы и умножим на - тый столбец , так как - тый столбец матрицы это двоичный вектор с одной единицей, то от - той строчки матрицы выживет один элемент, причем на - том месте. Умножив - тую строчку матрицы , на остальные столбцы матрицы , получим, что в - той строке матрицы элементы поменяются местами. Умножая другие строки матрицы , будем наблюдать похожее (так как умножаем на те же самые столбцы матрицы ). Таким образом получим, что в матрице столбцы поменялись местами. |
Утверждение: |
Квадрат элементарной матрицы перестановок есть единичная матрица. |
Утверждение: |
Матрица перестановок -го порядка может быть представлена в виде произведения элементарных матриц перестановок. |
Применение
Благодаря своим свойствам, матрицам перестановок нашлось применение в линейной алгебре:
пусть задана матрица перестановки
, которая соответствует перестановке , и матрица ,тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.