Расстояние Хэмминга — различия между версиями
(→Доказательство неравенства треугольника) |
Proshev (обсуждение | вклад) |
||
Строка 32: | Строка 32: | ||
*[http://en.wikipedia.org/wiki/Hamming_distance Hamming distance - Wikipedia] | *[http://en.wikipedia.org/wiki/Hamming_distance Hamming distance - Wikipedia] | ||
*[http://inf.1september.ru/article.php?ID=200701701 Математические основы информатики] | *[http://inf.1september.ru/article.php?ID=200701701 Математические основы информатики] | ||
+ | |||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Алгоритмы сжатия]] | [[Категория: Алгоритмы сжатия]] |
Версия 22:33, 16 января 2012
Определение: |
Расстояние Хэмминга (Hamming distance) — число позиций, в которых различаются соответствующие символы двух строк одинаковой длины. |
В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.
Пример
Свойства
Расстояние Хэмминга обладает свойствами метрики, так как удовлетворяет ее определению.
- (Если расстояние от до равно нулю, то и совпадают ( ))
- (Объект удален от объекта так же, как объект удален от объекта )
- (Расстояние от до всегда меньше или равно расстоянию от до через точку . Это свойство обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.)
Доказательство неравенства треугольника
Утверждение: |
Пусть слова | и отличаются в некоторых позициях. Тогда какое бы слово мы ни взяли, оно будет отличаться в каждой из этих позиций по крайне мере от одного из слов и . Следовательно, суммируя в правой части и , мы обязательно учтем все позиции, в которых различались слова и . Т.е. получается, что .