Теоремы Карзанова о числе итераций алгоритма Диница в сети с целочисленными пропускными способностями — различия между версиями
(→Определения) |
|||
Строка 30: | Строка 30: | ||
Пусть <tex>l</tex> - расстояние между <tex>s</tex> и <tex>t</tex>, а <tex>V_i</tex> - набор вершин, удаленных от <tex>s</tex> на <tex>i</tex> <tex>(i \leq l)</tex>. | Пусть <tex>l</tex> - расстояние между <tex>s</tex> и <tex>t</tex>, а <tex>V_i</tex> - набор вершин, удаленных от <tex>s</tex> на <tex>i</tex> <tex>(i \leq l)</tex>. | ||
<tex>V_i</tex> - разъединяющее множество узлов: при его удалении исчезают все пути из <tex>s</tex> в <tex>t</tex>. | <tex>V_i</tex> - разъединяющее множество узлов: при его удалении исчезают все пути из <tex>s</tex> в <tex>t</tex>. | ||
− | Следуя | + | Следуя закону [[Определение сети, потока|сохранения потока]], если <tex>f</tex> обозначить как любой допустимый поток, то <tex>|f|</tex> единиц потока должно проходить через <tex>V_i</tex>. |
Но суммарное количество потока, которое может проходить через любую вершину не превосходит ее потенциала. | Но суммарное количество потока, которое может проходить через любую вершину не превосходит ее потенциала. | ||
Отсюда, если обозначить <tex>P_i</tex> как общий потенциал вершин из <tex>V_i</tex>, то мы имеем: | Отсюда, если обозначить <tex>P_i</tex> как общий потенциал вершин из <tex>V_i</tex>, то мы имеем: | ||
Строка 67: | Строка 67: | ||
Пусть <tex>F</tex> - максимальный поток в сети <tex>N</tex>. Теорема верна для <tex>F \leq \sqrt{P}</tex>, так как после каждой фазы поток увеличивается хотя бы на 1. Если <tex>F > \sqrt{P}</tex>, рассмотрим последнюю фазу, на момент начала выполнения которой поток в сети был меньше, чем <tex>F - \sqrt{P}</tex>. После этого потребуется не больше <tex>\sqrt{P}</tex> фаз, чтобы найти максимальный поток. На предыдущей фазе поток (<tex>f</tex>) в <tex>N</tex> был не больше <tex>F-\sqrt{P}</tex>, таким образом <tex>F-|f| \leq \sqrt{P}</tex>. | Пусть <tex>F</tex> - максимальный поток в сети <tex>N</tex>. Теорема верна для <tex>F \leq \sqrt{P}</tex>, так как после каждой фазы поток увеличивается хотя бы на 1. Если <tex>F > \sqrt{P}</tex>, рассмотрим последнюю фазу, на момент начала выполнения которой поток в сети был меньше, чем <tex>F - \sqrt{P}</tex>. После этого потребуется не больше <tex>\sqrt{P}</tex> фаз, чтобы найти максимальный поток. На предыдущей фазе поток (<tex>f</tex>) в <tex>N</tex> был не больше <tex>F-\sqrt{P}</tex>, таким образом <tex>F-|f| \leq \sqrt{P}</tex>. | ||
− | <tex>N(f)</tex> - сеть с максимальным потоком <tex>F-|f|</tex> и потенциалом <tex>P</tex> (по Лемме(2)). Поэтому | + | <tex>N(f)</tex> - сеть с максимальным потоком <tex>F-|f|</tex> и потенциалом <tex>P</tex> (по Лемме(2)). Поэтому можно воспользоваться Леммой(1), чтобы оценить расстояние между <tex>s</tex> и <tex>t</tex> в <tex>N(f)</tex>, и получить оценку длины <tex>l</tex> слоистой сети: |
<tex>l \leq \frac{P}{F-|f|} + 1</tex> | <tex>l \leq \frac{P}{F-|f|} + 1</tex> | ||
Строка 79: | Строка 79: | ||
Пусть в сети <tex>N</tex> нет [[Основные определения теории графов#def1|параллельных ребер]]. <tex>f</tex> - поток в <tex>N</tex>, а <tex>F</tex> - максимальный поток в <tex>N(f)</tex>. Тогда расстояние <tex>l</tex> между <tex>s</tex> и <tex>t</tex> в <tex>N(f)</tex> таково: <tex>l \leq |V|\sqrt{\frac{2C}{F}} - 1</tex>. | Пусть в сети <tex>N</tex> нет [[Основные определения теории графов#def1|параллельных ребер]]. <tex>f</tex> - поток в <tex>N</tex>, а <tex>F</tex> - максимальный поток в <tex>N(f)</tex>. Тогда расстояние <tex>l</tex> между <tex>s</tex> и <tex>t</tex> в <tex>N(f)</tex> таково: <tex>l \leq |V|\sqrt{\frac{2C}{F}} - 1</tex>. | ||
|proof= | |proof= | ||
− | + | Обозначим <tex>V_i</tex> как набор вершин на расстоянии <tex>i</tex> от <tex>s</tex>. Множества <tex>X = \bigcup_{i = 0}^k V_i</tex> и <tex>Y = V - X</tex> определяют разрез <tex>(X, Y)</tex>. Пропускная способность этого разреза не больше <tex>2C|V_k||V_{k + 1}|</tex>, так как все ребра между <tex>X</tex> и <tex>Y</tex> также являются ребрами между <tex>V_k</tex> и <tex>V_{k+1}</tex> и не более чем двумя параллельными ребрами, исходящими из какой-то вершины в остаточной сети. По теореме о максимальном потоке/минимальном разрезе, <tex>F \leq 2C|V_k||V_{k+1}|</tex>. | |
− | Таким образом <tex>F</tex> ограничен наименьшим из <tex>|V_k||V_{k+1}|</tex>. Но | + | Таким образом <tex>F</tex> ограничен наименьшим из <tex>|V_k||V_{k+1}|</tex>. Но эта величина максимальна, когда <tex>|V_i| = |V|/(l+1)</tex> для <tex>0 \leq i \leq n</tex>, таким образом <tex>F \leq 2C|V|^2(l+1)^2</tex>. Выражая <tex>l</tex>, получаем нужное. |
}} | }} | ||
Версия 01:56, 17 января 2012
Определения
Определение: |
Пусть сеть с целочисленными пропускными способностями.
Обозначим и , как максимальная пропускная способность ребра и максимальный поток соответственно.. . - потенциал вершины . Тогда общий потенциал выражается формулой: .Остаточную сеть обозначим . Обозначим длину слоистой сети - как длину кратчайшего пути в . | -
Теоремы
Лемма (1): |
Пусть - расстояние между и в сети с текущим потоком, равным 0, и максимальным потоком, равным .
Тогда |
Доказательство: |
Пусть сохранения потока, если обозначить как любой допустимый поток, то единиц потока должно проходить через . Но суммарное количество потока, которое может проходить через любую вершину не превосходит ее потенциала. Отсюда, если обозначить как общий потенциал вершин из , то мы имеем: - расстояние между и , а - набор вершин, удаленных от на . - разъединяющее множество узлов: при его удалении исчезают все пути из в . Следуя закону
для любого допустимого потока . В частности, , таким образом получаем:и лемма доказана. |
Лемма (2): |
Пусть - сеть, а - допустимый поток в этой сети. Тогда общий потенциал в остаточной сети равен общему потенциалу . |
Доказательство: |
Пусть - функция пропускных способностей в , а - потенциал, множество входящих ребер и множество выходящих ребер вершины из .Достаточно доказать, что . Ребру из соответствуют ребро из с пропускной способностью , и ребро из с пропускной способностью . Аналогично, ребру из соответствуют ребра из с пропускной способностью и с пропускной способностью . Используя правило сохранения потока, нетрудно проверить, что
и что и требовалось доказать. |
Теорема (Первая теорема Карзанова): |
Число итераций алгоритма Диница в сети ( — исток, — сток) с целочисленными пропускными способностями — . |
Доказательство: |
Пусть - максимальный поток в сети . Теорема верна для , так как после каждой фазы поток увеличивается хотя бы на 1. Если , рассмотрим последнюю фазу, на момент начала выполнения которой поток в сети был меньше, чем . После этого потребуется не больше фаз, чтобы найти максимальный поток. На предыдущей фазе поток ( ) в был не больше , таким образом .- сеть с максимальным потоком и потенциалом (по Лемме(2)). Поэтому можно воспользоваться Леммой(1), чтобы оценить расстояние между и в , и получить оценку длины слоистой сети: Так как каждая фаза увеличивает длину слоистой сети минимум на один, то осуществляется не больше фаз. Таким образом происходит не более фаз. |
Лемма (3): |
Пусть в сети параллельных ребер. - поток в , а - максимальный поток в . Тогда расстояние между и в таково: . нет |
Доказательство: |
Обозначим Таким образом как набор вершин на расстоянии от . Множества и определяют разрез . Пропускная способность этого разреза не больше , так как все ребра между и также являются ребрами между и и не более чем двумя параллельными ребрами, исходящими из какой-то вершины в остаточной сети. По теореме о максимальном потоке/минимальном разрезе, . ограничен наименьшим из . Но эта величина максимальна, когда для , таким образом . Выражая , получаем нужное. |
Теорема (Вторая теорема Карзанова): |
Число итераций алгоритма Диница с целочисленными пропускными способностями - . |
Доказательство: |
Если , то теорема очевидна. Положим, что , и рассотрим последнюю фазу, в которой поток не превышает . В этот момент осталось не более фаз, и - сеть с максимальным потоком . Мы можем применить Лемму(2), чтобы оценить длину слоистой сети, и, соответственно, количество выполненных фаз:
Таким образом, прошло . фаз, и фаз осталось. Теорема доказана. |