Цепные дроби как приближение к числу — различия между версиями
(→Теорема 4) |
м (Окружение math заменено на tex в первой теореме. Применен шаблон Теорема. Пока расширение parserfunctions не установлено будет некрасивый {{{author}}}.) |
||
Строка 1: | Строка 1: | ||
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <math>\alpha</math> разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству: | Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <math>\alpha</math> разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству: | ||
− | < | + | <tex>|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i \cdot Q_{i+1}} < \frac{1}{Q_i^2}</tex>. |
==Теорема 1== | ==Теорема 1== | ||
− | Для любого иррационального числа < | + | {{Теорема |
− | + | |statement= | |
− | Рассмотрим две последующие подходящие дроби к < | + | Для любого иррационального числа <tex>\alpha</tex> существует бесконечное число дробей <tex>\frac{P}{Q}</tex> таких, что <tex>~|\alpha-\frac{P}{Q}|<\frac{1}{2Q^2}</tex>. |
− | Но поскольку < | + | |proof= |
+ | Рассмотрим две последующие подходящие дроби к <tex>\alpha : \frac{P_k}{Q_k}</tex> и <tex> \frac{P_{k+1}}{Q_{k+1}}</tex>. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: <tex>|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{2Q_k^2}, |\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{2Q_{k+1}^2}</tex>. Отсюда <tex>|\alpha-\frac{P_k}{Q_k}|+|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}</tex>. | ||
+ | Но поскольку <tex>\alpha</tex> лежит между <tex>\frac{P_k}{Q_k}</tex> и <tex>\frac{P_{k+1}}{Q_{k+1}}</tex>, то <tex>|\alpha-\frac{P_k}{Q_k}|+|\alpha-\frac{P_{k+1}}{Q_{k+1}}| = |\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}</tex>, вследствие чего <tex>\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}\leqslant\frac{1}{Q_k Q_{k+1}}</tex>. Следовательно <tex>(\frac{1}{Q_k}-\frac{1}{Q_{k+1}})^2 \leqslant 0</tex>, что невозможно. Мы пришли к противоречию. Поэтому, по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения <tex>k</tex>, получим бесконечное множество дробей, удовлетворяющих условию теоремы. | ||
+ | }} | ||
==Теорема 2== | ==Теорема 2== | ||
+ | {{Теорема | ||
+ | |statement= | ||
Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{\sqrt{5}Q^2}</math> | Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{\sqrt{5}Q^2}</math> | ||
− | + | |proof= | |
Рассмотрим три последующие подходящие дроби к <math>\alpha : \frac{P_k}{Q_k}, \frac{P_{k+1}}{Q_{k+1}} </math> и <math> \frac{P_{k+2}}{Q_{k+2}}</math>. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: <math>~|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{\sqrt{5}Q_k^2}, ~|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{\sqrt{5}Q_{k+1}^2}, ~|\alpha-\frac{P_{k+2}}{Q_{k+2}}|\geqslant\frac{1}{\sqrt{5}Q_{k+2}^2}</math>. | Рассмотрим три последующие подходящие дроби к <math>\alpha : \frac{P_k}{Q_k}, \frac{P_{k+1}}{Q_{k+1}} </math> и <math> \frac{P_{k+2}}{Q_{k+2}}</math>. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: <math>~|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{\sqrt{5}Q_k^2}, ~|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{\sqrt{5}Q_{k+1}^2}, ~|\alpha-\frac{P_{k+2}}{Q_{k+2}}|\geqslant\frac{1}{\sqrt{5}Q_{k+2}^2}</math>. | ||
Строка 20: | Строка 25: | ||
Пользуясь рекуррентным соотношением получаем <math>\frac{1+\sqrt{5}}{2} > \frac{Q_{k+2}}{Q_{k+1}} = \frac{Q_{k+1}a_{k+1}+Q_k}{Q_{k+1}} = a_{k+1} + \frac{Q_k}{Q_{k+1}} > 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}</math>. Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения <math>k</math> получим бесконечно много дробей, для которых выполняется условие теоремы. q.e.d. | Пользуясь рекуррентным соотношением получаем <math>\frac{1+\sqrt{5}}{2} > \frac{Q_{k+2}}{Q_{k+1}} = \frac{Q_{k+1}a_{k+1}+Q_k}{Q_{k+1}} = a_{k+1} + \frac{Q_k}{Q_{k+1}} > 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}</math>. Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения <math>k</math> получим бесконечно много дробей, для которых выполняется условие теоремы. q.e.d. | ||
+ | }} | ||
==Теорема 4== | ==Теорема 4== |
Версия 12:16, 21 июня 2010
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число
разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству: .Содержание
Теорема 1
Теорема: |
Для любого иррационального числа существует бесконечное число дробей таких, что . |
Доказательство: |
Рассмотрим две последующие подходящие дроби к Но поскольку и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: . Отсюда . лежит между и , то , вследствие чего . Следовательно , что невозможно. Мы пришли к противоречию. Поэтому, по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения , получим бесконечное множество дробей, удовлетворяющих условию теоремы. |
Теорема 2
Теорема: |
Для любого иррационального числа существует бесконечное число дробей таких, что |
Доказательство: |
Рассмотрим три последующие подходящие дроби к и . Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: .Так как и расположены по разные стороны от , то при нечётном имеем , а при чётном - .Из последних двух неравенств следует, что . Умножив обе части на и перенеся все члены в левую часть получим: . То есть , следовательно для целых и имеем .Так как Пользуясь рекуррентным соотношением получаем и расположены по разные стороны от , то аналогично получаем . . Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения получим бесконечно много дробей, для которых выполняется условие теоремы. q.e.d. |
Теорема 4
Если некоторая дробь
удовлетворяет условию , то она - подходящая дробь для .Лемма1
Любую конечную цепную дробь
с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей.Доказательство
Если
: . Если : .Лемма2
Если