Алгоритм Эрли — различия между версиями
Kirelagin (обсуждение | вклад) (Первая половина доказательства в порядке) |
Kirelagin (обсуждение | вклад) (Быстрофикс по результатам обдумывания во сне) |
||
Строка 31: | Строка 31: | ||
Для простоты добавим новый стартовый вспомогательный нетерминал <tex>S'</tex> и правило <tex>S' \rightarrow S</tex>. | Для простоты добавим новый стартовый вспомогательный нетерминал <tex>S'</tex> и правило <tex>S' \rightarrow S</tex>. | ||
− | <tex>I_0</tex> ∪= <tex>[S' \rightarrow \cdot S, 0]</tex> | + | <tex>I_0</tex> ∪= <tex>[S' \rightarrow \cdot S, 0]</tex> # Правило (0) — инициализация |
useful_loop(0) | useful_loop(0) | ||
Строка 40: | Строка 40: | ||
function useful_loop(j): | function useful_loop(j): | ||
− | for <tex>[B \rightarrow \eta \cdot , i] \in I_j</tex> | + | do |
− | + | for <tex>[B \rightarrow \eta \cdot , i] \in I_j</tex> | |
− | + | for <tex>[A \rightarrow \alpha \cdot B \beta, k] \in I_{i}</tex> | |
+ | <tex>I_j</tex> ∪= <tex>[A \rightarrow \alpha B \cdot \beta, k]</tex> # Правило (2) | ||
− | + | for <tex>[B \rightarrow \alpha \cdot A \eta, k] \in I_j</tex> | |
− | + | for <tex>\beta : (A \rightarrow \beta) \in P</tex> | |
− | + | <tex>I_j</tex> ∪= <tex>[A \rightarrow \cdot \beta, j]</tex> # Правило (3) | |
+ | while на данной итерации какое-то множество изменилось | ||
==Корректность алгоритма== | ==Корректность алгоритма== | ||
{{Теорема | {{Теорема | ||
− | |statement = Приведенный алгоритм | + | |statement = Приведенный алгоритм правильно строит все списки ситуаций. |
|proof = | |proof = | ||
=====Алгоритм не добавит в список ситуацию, которая ему не принадлежит:===== | =====Алгоритм не добавит в список ситуацию, которая ему не принадлежит:===== | ||
− | Докажем по | + | Докажем индукцией по исполнению алгоритма.<br/> |
− | База | + | База (инициализация): <tex>\alpha = \varepsilon \Rightarrow^* \varepsilon </tex> и <tex>S' \Rightarrow^* \gamma S \delta </tex> при <tex>\gamma = \delta = \varepsilon </tex>.<br/> |
− | Индукционный переход: пусть | + | Индукционный переход: пусть в <tex> I_{0},...,I_{j} </tex> нет лишних ситуаций. Пусть включаем <tex>[A \rightarrow \alpha \cdot \beta, i] </tex> в <tex>I_{j}</tex>. Рассмотрим три случая: |
− | 1. | + | 1. Включаем по правилу 1.<br/> |
Тогда <tex>\alpha = \alpha' a_{j} , [A \rightarrow \alpha' \cdot a_{j} \beta, i] \in I_{j-1}</tex>. По предположению, <tex>\alpha' \Rightarrow^* a_{i+1}...a_{j-1} </tex> и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' A \delta', \gamma' \Rightarrow^* a_1...a_{i} </tex>. Значит, <tex> \alpha = \alpha' a_{j} \Rightarrow^* a_{i+1}...a_{j} </tex> и при <tex>\gamma = \gamma', \delta = \delta'</tex> <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>. | Тогда <tex>\alpha = \alpha' a_{j} , [A \rightarrow \alpha' \cdot a_{j} \beta, i] \in I_{j-1}</tex>. По предположению, <tex>\alpha' \Rightarrow^* a_{i+1}...a_{j-1} </tex> и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' A \delta', \gamma' \Rightarrow^* a_1...a_{i} </tex>. Значит, <tex> \alpha = \alpha' a_{j} \Rightarrow^* a_{i+1}...a_{j} </tex> и при <tex>\gamma = \gamma', \delta = \delta'</tex> <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>. | ||
− | 2. | + | 2. Включаем по правилу 2.<br/> |
Тогда <tex>\alpha = \alpha' B , [A \rightarrow \alpha' \cdot B \beta, k] \in I_{i}</tex> и <tex> [B \rightarrow \eta \cdot, i] \in I_{j} </tex>. По предположению, <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}, \eta \Rightarrow^* a_{i+1}...a_{j} </tex>, откуда <tex>\alpha = \alpha' B \Rightarrow^*a_{k+1}...a_{j} </tex>. Кроме того, существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' A \delta', \gamma' = a_1...a_{k} </tex>. Значит, при <tex>\gamma = \gamma', \delta = \delta'</tex> <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>. | Тогда <tex>\alpha = \alpha' B , [A \rightarrow \alpha' \cdot B \beta, k] \in I_{i}</tex> и <tex> [B \rightarrow \eta \cdot, i] \in I_{j} </tex>. По предположению, <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}, \eta \Rightarrow^* a_{i+1}...a_{j} </tex>, откуда <tex>\alpha = \alpha' B \Rightarrow^*a_{k+1}...a_{j} </tex>. Кроме того, существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' A \delta', \gamma' = a_1...a_{k} </tex>. Значит, при <tex>\gamma = \gamma', \delta = \delta'</tex> <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>. | ||
− | 3. | + | 3. Включаем по правилу 3.<br/> |
Тогда <tex>\alpha = \varepsilon, i = j, [B \rightarrow \alpha' \cdot A \eta, k] \in I_{j}, A \Rightarrow \beta</tex>. По предположению <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}</tex> и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' B \delta', \gamma' \Rightarrow^* a_1...a_{k} </tex>. Значит, при <tex>\gamma = \gamma' \alpha', \delta = \eta \delta' </tex> выполнено <tex> S' \Rightarrow^* \gamma A \delta</tex>, следовательно <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>. | Тогда <tex>\alpha = \varepsilon, i = j, [B \rightarrow \alpha' \cdot A \eta, k] \in I_{j}, A \Rightarrow \beta</tex>. По предположению <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}</tex> и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S' \Rightarrow^* \gamma' B \delta', \gamma' \Rightarrow^* a_1...a_{k} </tex>. Значит, при <tex>\gamma = \gamma' \alpha', \delta = \eta \delta' </tex> выполнено <tex> S' \Rightarrow^* \gamma A \delta</tex>, следовательно <tex>[A \rightarrow \alpha \cdot \beta, i] \in I_j</tex>. | ||
Версия 20:27, 18 января 2012
Алгоритм Эрли позволяет определить, выводится ли данное слово контекстно-свободной грамматике .
в даннойВход: КС грамматика
Выход: , если выводится в ; — иначе.
Содержание
Определения
Определение: |
Пусть контекстно-свободная грамматика и — входная цепочка из . Объект вида , где — правило из и — позиция в , называется ситуацией, относящейся к цепочке . | —
Определение: |
-м списком ситуаций для входной цепочки , где , называется множество ситуаций . То есть выводит часть c первого по -й символ. |
Лемма: |
. |
Доказательство: |
Поскольку | (при ), из определения получаем, что .
Определение: |
Последовательность списков ситуаций | называется списком разбора для входной цепочки .
Алгоритм Эрли
Построим список разбора для
Для простоты добавим новый стартовый вспомогательный нетерминал
и правило .∪= # Правило (0) — инициализация useful_loop(0) for i = 1..n for ∪= # Правило (1) useful_loop(j)
function useful_loop(j): do forfor ∪= # Правило (2) for for ∪= # Правило (3) while на данной итерации какое-то множество изменилось
Корректность алгоритма
Теорема: |
Приведенный алгоритм правильно строит все списки ситуаций. |
Доказательство: |
Алгоритм не добавит в список ситуацию, которая ему не принадлежит:Докажем индукцией по исполнению алгоритма. 1. Включаем по правилу 1. 2. Включаем по правилу 2. 3. Включаем по правилу 3. В каждый список попадут все ситуации, которые ему принадлежат:Для всех наборов нужно доказать, что если , то .Рангом набора называется , где — длина кратчайшего вывода , — длина кратчайшего вывода , — длина кратчайшего вывода .Докажем утверждение по индукции. 1. 2. 3. Если , то , следовательно , откуда , а по и.п. . Значит . Тогда такие, что , где . Рассмотрим набор , где такое, что . Обозначим длину кратчайшего вывода за , а длину кратчайшего вывода за . Найдем ранг . . Следовательно ранг равен . Значит по и.п. , следовательно по правилу 3 будет добавлена в . |
Пример
Рассмотрим грамматику
Построим для строки список разбора.
— из инициализации
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 1
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 1
— из правила 2
— из правила 2
— из правила 2
— из правила 2
— из правила 2
— из правила 1
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 1
— из правила 2
— из правила 2
— из правила 2
— из правила 2
— из правила 2
— из правила 2
— из правила 1
— из правила 2
— из правила 2
— из правила 2
— из правила 2
— из правила 2
Так как , то .
Литература
Ахо А., Ульман Д. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтаксический анализ. Пер. с англ. — М.:«Мир», 1978. С. 358 — 364.